Barnegat Bay

Long Term Ambient Monitoring Program

New Jersey Department of Environmental Protection

Water Monitoring and Standards

June 2013

QUALITY ASSURANCE SAMPLING PLAN Barnegat Bay Watershed, WMA 13

Project Officer 1:

Signature

Jill Lipoti, PhD. Director Water Monitoring and Standards

Interim Project Officer:

Jeffrey Reading, Manager 3 Water Monitoring and Standards

NJDEP:

<u>9/24/1</u>3 Date Grea

Signature Barbara Hirst, Bureau Chief Bureau of Environmental Analysis and Restoration Water Monitoring and Standards

NJDEP:

NJDEP:

Signature

Leslie McGeorge, Administrator Bureau of Freshwater & Biological Monitoring Water Monitoring and Standards

9/24/13 Date

9

13

Signature Bruce Friedman, Bureau Chief Bureau of Marine Water Monitoring Water Monitoring and Standards

NJDEP: Quality Assurance Officer

10 8 Date Signature

Debra Waller, Research Scientist Office of Quality Assurance

- 1. Project Name: Barnegat Bay Long Term Ambient Monitoring Program
- 2. Requesting Agency: NJDEP, Water Monitoring and Standards
- 3. Date of Project Requested: June, 2013
- 4. Date of Project Initiation: July, 2013
- 5. Project Officer: Jill Lipoti, Director, WM&S, Jeff Reading, Interim Project Officer, WM&S
- 6. Project Duration: July 2013 thru June 2018

7. Special Training Needs/Certification

This project utilizes the assistance of several partners to conduct sample collection and field analysis. Approval of project partners will be performed annually by the Office of Quality Assurance. The Project Officer (OQA) or designee will be responsible for providing any necessary training and facilitating the project approval process with OQA.

8. Project Description

8.1. Background: Barnegat Bay Ambient Water Monitoring Project

On June 6, 2011, DEP and its partners launched this comprehensive ambient monitoring project that measured both water quality and water quantity in ways never done before in the Bay. The Department had enlisted numerous Partners, including local and county governments, State and Federal agencies, a science high school, a university and other organizations to assist the Department in sampling and sample analysis. Water quality was measured with grab samples taken at 12 streams which enter the Bay, as well as at 14 locations within the Bay. Water flow into the Bay was measured at 12 streams, and water flows into and out of the Bay at the three inlets from the Atlantic Ocean. Also, water circulation within the Bay was measured at 3 locations. Continuous monitoring (at select locations), intensive summer season monitoring, continuous temperature monitoring around the Oyster Creek facility, sediment monitoring and a survey to map the bottom of the Bay (i.e. bathymetric survey) was carried out. On a given sampling day, the Department and its Partners sample water quality and measure flow at both stream and bay locations. The continuous and intensive monitoring components complemented the discrete sampling to capture the full range of daily, tidal and seasonal variations.

The purpose of this study was to address the following objectives:

- 1. Provide more comprehensive assessment of the relevant water quality conditions throughout the Barnegat Bay both spatially and temporally;
- 2. Provide water quality and biomass data to better quantify biological productivity and its impact on dissolved oxygen concentrations in the Bay;
- 3. Estimate the nutrient loadings into the bay and establish boundary conditions for the significant tributaries to the bay;
- 4. Provide nutrient concentration and loading data needed to evaluate the effects of nutrient load reduction scenarios;
- 5. Provide an understanding of the physical factors affecting the bay water quality; such as the flushing rate, temperature, salinity and the depth of the bay. These factors play a major role in the physical, chemical and biological processes operating within the bay;
- 6. Collect data that captured daily and seasonal variability as well as variability between years;
- 7. Collect sufficient data (minimum 24 months) to develop water quality and hydrodynamics models;
- 8. Calibrate and validate modeling tools that can be used to direct water quality restoration of the bay.

This project was conducted in three phases, over a 2 year period, which included 3 intensive events. While the development of the water quality and hydrodynamics models continues, **THE MONITORING PROJECT WAS SUCCESSFULLY CONCLUDED ON JUNE 30, 2013.**

8.2 - Objective and Coverage: Barnegat Bay Long Term Ambient Monitoring Program

Building on the success of the completed monitoring project, the purpose of this new program is to monitor on-going quality of the bay and those tributaries with the most significant impacts/loadings to the bay, as well as different land uses. This monitoring program will commence in July 2013.

The goals of the program are to:

- 1. Capture changes in water quality in the Barnegat Bay watershed over time.
- 2. Document changes in nutrient loadings to the Barnegat Bay watershed and its watershed resulting from the fertilizer legislation.
- 3. Document changes as a result of restoration actions taken as part of the Governor's 10 Point Plan, including actions guided by the water quality and hydrodynamics models underdevelopment, as well as other restoration actions.
- 4. Data will also be used for assessment purposes as part of the Integrated Water Quality Monitoring and Assessment Report process.
- 5. Superstorm Sandy: On October 25, 2012, Superstorm Sandy directly hit the New Jersey coast including Barnegat Bay. While the damage and some of the impacts are evident, it will be years before the full impact of the storm on the Bay are known. This long term monitoring program will help capture those changes that impact water quality over time.
- 6. To be able to better characterize the normal fluctuations in water quality so that we can have a better definition of the uncertainty surrounding any given water quality measurement.
- 7. To provide water quality data that can be referenced to the biological research, which is occurring concurrently.
- 8. Interpretation of the narrative nutrient criteria requires water quality data to be collected at the same time as biological studies.

Sampling Network and Design Rationale

9.1 Continuous in-situ water quality monitoring

Continuous monitoring multi-parameter probes will be deployed at the proposed monitoring sites in the Barnegat Bay. Table 1 specifies the list of parameters, frequency of collection and the number of sites for each phase of sampling. Table 2 identifies the bay sampling locations and Figure 1 shows the location of all of the proposed sampling sites.

Table 1: Continuous Monitoring Plan: Monitoring Parameters and Frequency of Collection Continuous Monitoring Plan*

			5		
		Bay		Frequency	
Sampling Stations	Sampling Type	Sampling Matrix Parameters		Frequency	
4 buoy locations and 1 fixed station, as identified in Table 2 and Figure 1 below	Continuous monitoring probes at mid depth ² using 4 buoy- located devices and 1 device housed within a fixed station (Mantoloking)	Aqueous	Dissolved Oxygen concentration (DO), pH, Temperature, Turbidity ³ , Conductivity, Salinity ² , Chlorophyll-a; (possible deployment of NO_3^3 probe at Mantoloking using a buoy provided by USGS)	Measurements every 15 minutes.	
		Tributary	I		
Sampling Stations	Sampling Type	Sampling Matrix	Parameters	Frequency	
Toms River near Toms River (USGS 01408500)	probes located within the existing gauging station	Aqueous	Dissolved Oxygen concentration (DO), pH, Temperature, Turbidity ³ , Conductivity, Nitrate/Nitrite ³	Measurements every 15 minutes.	

*Separate QAPPs have been developed for the Department's continuous monitoring efforts and will be added to this document as an editorial revision.

 $^{^{2}}$ Sampling sites where depth is greater than 12 feet, two samples will be taken at 1/3 and 2/3 depth.

 $^{^{2}}$ Salinity to be calculated from conductivity.

³ Requires the use of a NJ Certified laboratory.

Table 2: List of monitoring sites within	in the Barnegat Bay
--	---------------------

~		Type:				Site
Station		Grab/			Site Reference	Partner
ID	Site Description	Buoy/Fixed	Longitude	Latitude	ID	
		G,F				DEP-
BB01	Barnegat Bay at					Leeds Pt.
(1605A)	Mantoloking		-74.054320	40.038320	USGS-01408168	
BB03	Barnegat Bay by	G				DEP-
(1629B)	Route 37 Bridge		-74.101530	39.9481700	BMWM1629B	Leeds Pt.
	Barnegat Bay near	G,B				DEP-
	the Mouth of Toms		-74.14069	39.93289		Leeds Pt.
BB04a	River				BMWM1502A	
	Barnegat Bay below	G				DEP-
	Cedar Creek and					Leeds Pt.
BB06	above Forked River		-74.102080	39.8526200	BMWM1651D	
	Barnegat Bay below	G,B				DEP-
	Oyster Creek and		-74.1571172	39.8012861		Leeds Pt.
BB07a	above Barnegat Inlet				DEPMODELSITE	
	Democrat Democra	G	-74.1018	39.80984	BMWM1661F	DEP-
1661E	Barnegat Bay at Station 1661F					Leeds Pt.
1661F	Station 1001F	G				DED
	Barnegat Bay by	G			MU-Barnegat	DEP-
BB08	Barnegat Inlet		-74.108014	39.7633528	Inlet	Leeds Pt.
	Barnegat Bay below	G,F				DEP-
BB09	Barnegat Inlet and	,				Leeds Pt.
(1674B)	close to Long Beach		-74.147920	39.7426200	BMWM1674B	
· · · · ·	Manahawkin Bay at	G	-74.2051	39.6404	BMWM1707C	DEP-
1707C	Station 1707C	_				Leeds Pt.
	Manahawkin Bay at	G	-74.2701	39.61679	BMWM1712	DEP-
1712	Station 1712	_				Leeds Pt.
	Barnegat Bay in	G				DEP-
BB12	Little Egg Harbor	_	-74.268750	39.5815100	BMWM1834A	Leeds Pt.
	Little Egg Harbor at	G	-74.2682	39.5354	BMWM1826A	DEP-
1826A	Station 1826A		,	0,0001		Leeds Pt.
-	Little Egg Harbor	G,B				DEP-
	Inlet near Beach	_,_				Leeds Pt.
BB14	Haven Heights		-74.297370	39.5112300	BMWM1824B	

Field Parameters

Field parameters, pH, water temperature, dissolved oxygen and specific conductance, will be measured on site. Collected turbidity samples will be measured at a project field station by staff certified for turbidity measurements. Sample filtration for tributary stations only for dissolved parameters will be conducted by Bureau of Freshwater and Biological Monitoring staff in the field or the Bureau of Marine Water Monitoring staff at the Leeds Point Laboratory. At each sampling location, parameters requiring immediate analysis (i.e. pH, specific conductance, salinity (calculated from specific conductance), and dissolved oxygen,) will be taken using handheld meters or multi parameter sensors. The turbidity sample may be as a field measurement from the meter by BFBM staff or at the Bureau of Marine Water Monitoring Laboratory, Leeds Point.

9.2-Grab Water Quality Sampling

Grab samples will be collected at the Barnegat Bay locations listed on Table 2 and additionally at tributary sites listed on Table 5. Locations are shown in Figure 1. The proposed frequency varies by season and is listed in Table 3. Samples will be collected in accordance with approved field sampling procedures and analyzed in certified laboratories. The water quality parameters to be sampled are those listed in Table 3. The sampling schedule through June 2014 is included in Appendix D. This QAPP will be modified annually to include an updated sampling schedule.

All water quality grab samples will be collected following procedures found in "NJDEP Field Sampling Procedures Manual, August 2005". Sampling locations have been marked and verified with GPS. In addition NJDEP staff and project partners will utilize detailed site sketches to locate the sampling location on the first and subsequent visits. The freshwater tributary locations samples will be collected as center of flow grab samples. At tributary locations greater than 20 ft. wide specific conductance measurements were made along a transect and it was determined that at all locations the stream is well mixed and that a center of flow grab sample would be representative of the water quality at that location. Because the water depth at the tributary monitoring locations is never greater than 12 ft., samples will be collected at a depth of 1 ft. If the water depth is less than 1 foot, samples will be collected at mid-water level. Bay water quality samples will be taken as surface grab samples. All tributary samples not filtered in the field, will be transported to Leeds Point Laboratory for filtration as reflected in Table 4 and Figures 2-3.

All sample containers are being supplied by the DEP and only these sample containers can be used for the project. All sample containers must be transported on ice in coolers to preserve the integrity of the samples and maintain sample temperature at greater then freezing and less than 6°C. Necessary preservatives will be added at Leeds Point Lab, except those stations sampled and processed in the field by NJDEP staff (Bureau of Freshwater and Biological Monitoring).

			Tributaries			
	I	Monitoring	Parameters and Freque	ency of Collection	n	
Sampling Stations	Sampling Type	Sampling Matrix	Parameters	Lab	Freq	uency
			Total Suspended Solids (TSS)	Leeds Point	Bay	Tributaries
Locations are identified in Tables 2 and 4.	Surface grabs	Aqueous	Total Suspended Solids (TSS)Chlorophyll-a (w/species ID)Total Nitrogen (TN)Dissolved Total NDissolved AmmoniaDissolved Nitrate+NitriteTotal Phosphorus (TP)Dissolved Total PhosphorusDissolved Total PhosphorusDissolved Ortho-PTotal Organic Carbon (TOC)Dissolved Inorganic CarbonDissolved Inorganic CarbonAlkalinityBiogenic Si**TurbiditySecchi depthTransmissometrypH ³ Dissolved Oxygen (DO)DO SaturationTemperatureConductivity (Salinity)	Leeds PointLeeds PointField	One sample: Twice monthly – May/June thru September * Monthly – October thru April/May *	One sample: Twice monthly – May/June thru September * Monthly – October, December, February & April
			•	Field		

Table 3: Grab Samples: Monitoring Parameters and Frequency of Collection in Barnegat Bay and its Tributaries

* Need for second sampling event in April or May dependent on arrival of spring conditions
 ** Samples will be filtered for Biogenic Silica by the testing laboratory

Table 4: The Analytical Method Table

	4: The Analy		ethou .						
Org	Parameter		Prep	Code	Method	Container	Preservative	Holding Time	Bottle
NJDEP BFBM	Turbidity	FwSw	U	Turb	SM 2130 B-11	50 mL centrifuge tube	lce, 4ºC	48 hours	T1
	Total Suspended Solids	FwSw	U	TSS	USGS I-3765- 85	Amber 500 mL HDPE	Ice, 4ºC	24 hours	L1
	Chlorophyll a (bay only)	Sw	U	Chla	SM 10200-H 1+2	Amber 500 mL HDPE	Ice, 4ºC	24 hours	L1
	Total Nitrogen	FwSw	U	TN	USGS I-4650- 03	50 mL centrifuge tubes	Ice, 4ºC	28 days	L2
	Total Phosphorus	FwSw	U	TP	USGS I-4650- 03	50 mL centrifuge tubes	Ice, 4ºC	28 days	L2
	Dissolved Ammonia	FwSw	F	DNH3	350.1 MOD	50 mL centrifuge tubes	2 ml 3.5% Phenol	14 days	L3
	Dissolved Nitrite + Nitrate Dissolved	FwSw	F	DNO3	EPA 353.4	50 mL centrifuge tubes	lce, 4ºC	28 days	L4
	Orthophosph ate	FwSw	F	DPO4	EPA 365.5	50 mL centrifuge tubes	Ice, 4ºC	28 days	L4
	Dissolved Nitrogen	FwSw	F	DN	USGS I-4650- 03 USGS I-4650-	50 mL centrifuge tubes	Ice, 4ºC	28 days	L4
da	Dissolved Phosphorus Total Organic	FwSw	F	DP	03GS 1-4650- 03	50 mL centrifuge tubes	Ice, 4°C	28 days	L4
vint La	Nitrogen Dissolved	FwSw	NA	TON	Calculated	NA	NA	NA	NA
NJDEP Leeds Point Lab	Organic Nitrogen	FwSw	NA	DON	Calculated	NA	NA	NA	NA
DEP Le	Dissolved Organic Phosphorus	FwSw	NA	DOP	Calculated	NA	NA	NA	NA
ſĸ	Particulate Organic Nitrogen	FwSw	NA	PON	Calculated	NA	NA	NA	NA
	Particulate Phosphorus	FwSw	NA	PP	Calculated	NA	NA	NA	NA
	Dissolved	Sw	F	DOC	SM 5310 C	Glass, 250ml	Conc. H2SO4, pH<2	28 days	L7
	Organic Carbon	Fw	F	DOC	SM 5310 C	250 mL HDPE	Conc. H2SO4, pH<2	28 days	
	Total Organic	Sw	U	тос	SM 5310 C	Glass, 250ml	Conc. H2SO4, pH<2	28 days	L8
	Carbon	Fw	U	тос	SM 5310 C	250 mL HDPE	Conc H2SO4, pH<2	28 days	
	Alkalinity	FwSw	U	Alk	SM 2320 B-11	250 mL HDPE	lce, 4⁰C	14 days	E1
	Biogenic Silica	FwSw	U	Si	EPA 366.0 MOD	125 mL HDPE	Ice, 4ºC	6 months	E2

Table 5: Tributary Sampling Locations

					Flow-	The Chi	Water	
Station ID	Site #	Description	LATITUDE	LONGITUDE	Measurement Type	Flow Site Partner	Quality Site Partner	
Station ID	Site "	North Branch	LITTICDL	LONGITUDE	NA staff gage	1 al thei	1 ai thei	
		Metedeconk			present			
		River at			present	NA	NJDEP/BFBM	
01408100		Lakewood	40.109722	-74.219167				
		North Branch			Extrapolate	NA	Brick MUA	
		Metedeconk R			from existing	INA	DICK WOA	
USGS-01408123	BT01	near Laurelton	40.081648	-74.151811	gage			
		SB			Gage			
		Metedeconk						
		River near				USGS	Brick MUA	
		Laurelton (Chambers						
LIGGS 01408152	BT02	(Chambers Bridge Rd)	40.078763	-74.156729				
USGS-01408152	D 102	South Branch	40.078703	-14.130129				
	ľ	Metedeconk						
		River at			NA	NA	NJDEP/BFBM	
01408136		Bennetts Mills	40.126667	-74.277778				
		Toms River						
		near Van			NA	NA	NJDEP/BFBM	
01408260		Hiseville	40.109722	-74.373611				
		Ridgeway						
		Brook at Route			NA	NA	NJDEP/BFBM	
		70 near			INA	INA		
010408492		Lakehurst	40.020833	-74.273611				
		Toms River			~			
	DT02	near Toms	20.07(200	74 010000	Gage	USGS	NJDEP/BFBM	
USGS-01408505	BT03	River	39.976389	-74.218333				
		Wrangle Brook near South			Measure	NJDEP/BFBM	NJDEP/BFBM	
USGS-01408640	BT04	Toms River	39.952854	-74.218515	Measure	NJDEP/DFDM	NJDEP/DFDM	
0505-01408040	D104	Cedar Creek at	37.732034	-74.216515	NA* staff			
01408830		Cedar Crest	39.897222	-74.316389	gage present	NA	NJDEP/BFBM	
01100050		Cedar Creek	39.097222	/ 1.510507				
USGS-01408950	BT06a		39.8711111	-74.1738889	Gage1	USGS	MATES	
		NB Forked R			X	NUDED/DED/		
USGS-01409055	BT07	at Forked River	39.836035	-74.196013	Measure	NJDEP/BFBM	MATES	
		Oyster Creek			Gage			
		(upstream Rt 9				USGS	NJDEP/BFBM	
BFBM000167	BT10	@ JCPL)	39.810584	-74.204626				
					Flow-		Water Quality	
					Measurement	Flow Site	Site Partner	
Station ID	Site #	Description	LATITUDE	LONGITUDE	Туре	Partner		
		Mill Ck at			Gage (new)	T TO ~~		
11000 01400010	DT11	Manahawkin	20 605 405	74.050505		USGS	BBP	
USGS-01409210	BT11	(Bay Avenue)	39.695405	-74.259527				
		Westecunk Ck						
		at Railroad			Measure	USCS	BBP	
USGS-01409281	BT12	Ave at West Ck	39.640297	-74.30797		USGS		
0505-01409281	DIIZ	CK	39.040297	-74.30797	on of I of 30 9701			

1Gage for this station is located slightly upstream of the water quality sampling location at: Lat 39.87917 Long -74.1906

9.3 -Flow monitoring

The locations of existing gages are presented in Table 6 and shown in Figure 1. At selected tributary locations where gages are absent, flow will be measured using hand held equipment such as SONTEK Flow Tracker (or equivalent). Flow measurement SOP is available in Flow Tracker Handheld ADV User's Manual (SonTek/YSI 2009 FlowTracker Handheld ADV User's Manual Firmware Version 3.7). Discharge measurements at higher stages that cannot be waded at the SB Metedeconk River at Chambers Bridge Road near Laurelton will be made from the bridge or a pulley system. A Teledyne RDI StreamPro Acoustic Doppler Current Profiler (ADCP) mounted to a tethered boat will be pulled across the stream from the downstream side of a bridge or on a pulley system from bank to bank (Gotvald and Oberg, 2009). A minimum of four transects are made across the channel. The ADCP transmits acoustic pings that record the velocity and depth of water. A Bluetooth wireless link from the ADCP transmits depth, distance and velocity data every second to a field computer. The field computer calculates the discharge for each transect. The discharge from the 4 transects are averaged. The USGS quality assurance plan for discharge measurements using ADCPs is published in Oberg and others, 2005. (Note: maintaining the existing gauging stations over the entire project term will depend on the availability of continuing funding.) References available online http://pubs.er.usgs.gov/usgspubs/sir/sir20055183 are at and http://pubs.er.usgs.gov/usgspubs/fs/fs20083096.

Station Description	Latitude	Longitude	Туре
Westecunk Creek at Stafford Forge NJ	39.666667	-74.320278	Tributary
Cedar Creek at RR	39.87917	-74.1906	Tributary
North Branch Metedeconk River near Lakewood			
NJ	40.091667	-74.1525	Tributary
Point Pleasant Canal at Point Pleasant, NJ	40.070278	-74.059722	Outlet/Inlet
Barnegat Bay at Mantoloking Bridge at			
Mantoloking	40.04	-74.057222	In Bay
Barnegat Bay at Route 37 Bridge near Bay Shore,	39.946111	-74.103056	In Bay
Barnegat Inlet at Barnegat Light, NJ	39.766389	-74.099167	Outlet/Inlet
Barnegat Bay at Route 72 Bridge near Ship			
Bottom	39.663333	-74.206944	In Bay
Little Egg Harbor Inlet near Beach Haven Heights	39.5075	-74.3075	Outlet/Inlet
Oyster Creek near Brookville, NJ	39.798333	-74.250556	Tributary
S.B. Metedeconk River near Lakewood, NJ	40.085833	-74.185556	Tributary
Mill Creek at Manahawkin, NJ	39.695278	-74.26	Tributary

Table 6: Gauging Stations

10. Data Usage

Water quality data sampled under this project will be used to identify assess water quality assessment and other purposes discussed in Section 7.2. All sampling procedures must be in conformance with NJDEP or USGS (URL http://water.usgs.gov/owq/FieldManual/index.html) field sampling procedures as well as other applicable guidance. If a method or procedure requires change and is not contained in Table 3 and Table 4, this information must be brought to the attention of the signatories of this QAPP through writing and needs approval prior to being used. Data sampled outside of this project plan which have been collected under an approved QAPP and analyzed in a New Jersey certified laboratory may also be utilized.

11. Reports

Data will be stored locally in electronic format (MS Access). All raw data records shall be maintained for a period of no less than five years. All water quality data collected, locations of final sampling sites, and related field notes should be entered in the New Jersey Water Quality Data Exchange (WQDE) and USEPA STORET Data Warehouse. Data quality assurance will occur at NJDEP Bureau of Marine using protocols found in USGS open file Report 02-383 "Methods for Quality Assurance Review of Water Quality Data in New Jersey".

12. Project area

Watershed project area covered under this project is the Barnegat Bay Watershed in WMA 13 (see Figure 1 for the spatial extent of the study). The GIS map provided identifies proposed monitoring locations, dischargers, and approximate head of tide.

13. Data Representativeness

The same methods and techniques will be used by all field collection staff. Technical assessments in the field and laboratory audits performed by NJDEP's Office of Quality Assurance will ensure that all samples are collected and analyzed per the QAPP. Any deviations from the QAPP will be documented and will be resolved prior to the next sampling event

14. Data Validation

Method blank (lab), equipment blank, duplicate, and replicate samples will add approximately 10 percent more to the total number of samples collected. The sample data is validated using the QC data. The QC sample must fall between two standard deviations at the 95th percentile confidence level to be valid. All laboratory and field spikes must be with between 80-120 %. Water quality results will be assessed against available, historical water quality data from the locations monitored. Data will also be assessed using USGS Open-File Report 02-383 "Methods for Quality Assurance Review of Water-Quality Data in New Jersey ". That report provides information on standard ranges of specific parameters in New Jersey streams and standard relationships between specific parameters. All data collected will be provided to NJDEP and WM&S staff will perform the data validation process. Data that cannot be confirmed by these reviews or explained by circumstances (i.e. heavy rain, drought) or project QA data will be classified as questionable by NJDEP. In addition, quality assurance protocols will be used by Leeds Point and BFBM for the data validations under the supervision of a quality assurance officer.

15. Data Quality Requirements

Continuous Data Quality

Data recorders are calibrated and programmed within 24 hours of each deployment following the manufacturer's manual. Duplicate DO measurements are made at the time of meter deployment and meter retrieval with a second meter, calibrated on site. Comparative DO readings not within the stated accuracy of the meters used will be reviewed against historical water quality data from that site as an additional quality review step. Data outside the stated accuracy of the meters used in the comparative readings and outside the historical range for DO at that location will not be used. At each sampling event, water quality grab samples will be taken at the location of the continuous meters and analyzed for the parameters listed in Table 4. This data will be utilized to validate the data collected by the continuous meters.

Field Quality Assurance and Quality Control

NJDEP and Partner groups field staff will be approved by DEP's Office of Quality Assurance for field measurements, which include: specific conductance (Wheatstone Bridge, SM 2510 B-11), dissolved oxygen (electronic SM 4500-O G), pH Electronic SM 4500-H B) and temperature (Thermometric). Project staff will follow manufacture's manuals regarding calibration and operating procedures for specific meters. Results of daily pH calibrations, D.O. air calibrations and specific conductance calibrations will be recorded on field calibration forms. Quarterly temperature ASTM-QC checks and weekly Winkler D.O. checks are also recorded. Turbidity samples will be analyzed at Leeds Point by NJDEP field staff who are certified for the measurement of turbidity (Nephelometric, SM 2130 B-11), The marine sample field quality control will consist of analyzing in the laboratory, the remaining sample not used for filtration for salinity; in addition, a dissolved oxygen Winkler titration sample will be collected at the time of sample collection and preserved immediately with manganous sulfate and alkaline-iodid-azide solutions. This data will be used to validate the data collected by the sondes in the field. The Winkler titration sample must be protected from the intrusion of atmospheric oxygen and needs to be analyzed prior to the validation for the salinity.

Leeds Point and/or BWMS Laboratory are certified to perform the parameters conducted for ambient water quality monitoring and will follow the Laboratory methods as outlined in Table 7. Any changes to the methods used must be pre-approved by the DEP before sample testing continues. Quality control procedures (including required calibrations and quality control procedures required by regulation or by the method) shall be defined in the laboratory's Quality Manual (QM) or Standard Operating Procedures (SOPs). The QM and SOPs must be approved by the OQA

The field meters or multi parameter meters will be calibrated using manufacturer specifications and the OQA requirements for accuracy and precision. Calibration and verification will be performed with the following:

Temperature

Temperature thermistors are factory calibrated. Thermistors must be checked against a National Institute of Standards and Technology (NIST)-certified/traceable thermometer on a quarterly basis. If not found to be accurate within + 0.5 °C of the certified thermometer an offset value will be applied to correct the reading or if drift is continuing to take place sonde/sensor will be replaced. Any change will be noted in the calibration log and will be applied to all temperature measurements. Temperature units will be degrees Celsius (°C). On June 14, 2013, the temperature monitoring devices were calibrated by DEP personnel against a NIST certified thermometer. This calibration must be repeated quarterly thereafter through the duration of the program. Duplicate testing is required once every 20 samples tested.

Salinity/Specific Conductance

Specific conductance is calibrated using a factory prepared conductivity standard with a value of 50 mS/cm or a 35 ppt salinity standard for the marine samples and 1.412 mS/cm for the fresh water locations, although alternative mS/cm solutions can be utilized as long as they are in the range of expected sample results. Specific conductance units will be mS/cm, Salinity will be expressed in parts per thousand (ppt). For sonde/sensor verification, another standard from a different source will be analyzed. The calibration must be checked in the measure mode with a standard. The required accuracy is that the calibration check data must be within 1% of the true value of the standard used to be acceptable for analysis. Duplicate testing is required once every 20 samples tested.

Dissolved Oxygen

Calibration of a DO meter at 100 percent oxygen saturation is made by adjusting the meter reading for air saturated with water vapor, as per the manufacturer's instructions. Sonde/Sensors will record both Dissolved Oxygen (DO) milligrams/liter (mg/l) and DO percent saturation (%). Samples for the Winkler titration will be collected at the marine water sites for sonde/sensor verification. Each week of use the DO meter must be verified against a Winkler titration procedure. The accuracy required between the reading from the DO meter and the results of the Winkler test must be within +/- 0.3 mg/L of each other to be acceptable. Duplicate testing is required once every 20 samples tested.

pН

Most multi-meters require the use of a three point calibration with 4, 7 and 10 pH buffers. A three point calibration is the preferred approach to a quality calibration. All calibrations must meet the accuracy requirement of being within 0.05 s.u. of the true value of the buffer used to be considered acceptable. A two point calibration can be performed using 7 and 10 buffers for the marine locations and 4 and 7 buffers for the fresh water locations as long as a calibration check (with the instrument in the measure mode) is conducted with the second of the two buffers used for calibration (i.e. 10 buffer for the marine and 7 buffer for the freshwater). The required calibration check result must be within 0.10 s.u. of the true value of the buffer used. Every three hours of use the meter must be checked with the calibration check buffer and must be accurate to 0.2 s.u. of the true value to be considered acceptable for continued use. The field staff may also recalibrate the meter at each site as an alternative to the three hour calibration check requirement. All readings for pH must be made in standard units. Duplicate testing is required once every 20 samples tested. Millivolt readings are also taken as a check of probe performance. For sonde/sensor verification, another certified pH buffer from a different source will be analyzed.

Turbidity

Turbidity samples will be analyzed in the field or at the Leeds Point Laboratory using a Hach model 2100P turbidimeter. Calibration of the turbidity meter will be accomplished by a 4 point method using HACH produced microbead synthetic turbidity primary standards every 3 months. The calibration is checked against HACH Gelex secondary standards and deionized water (0NTU) each day of use. Turbidity units will be (NTU). Duplicate testing is required once every 20 samples tested. A formazin standard or a standard from a different source will be analyzed for sonde/sensor verification.

Filtration Quality Control

Filtration quality control will consist of analyzing a filtration blank, that will be deionized water run through the pump tubes and the filter, preserved and analyzed as the other nutrient samples, prior to the filtration of samples. Between each sample, the pump tubes will be flushed with a cycle of deionized water/ 10% HCl/ deionized water. The filtration blank will be repeated after roughly half (13 samples) and at the end of the processing of 27 samples. This will ensure the validity of the data and the pump cleansing process. In addition, 2 filtration spikes and replicates will be performed for each sample run. The spike will consist of adding a known amount of analyte to a volume of sample, and the sample will be filtered and processed as the other samples, the spike will ensure that there are no interferences, loss of analyte or contamination of the sample. Filtrations must be performed within 8 hours of sample collection or sooner and the time of filtration will be documented in the laboratory records or on the chain of custody form for the project.

Lab	Parameter		Prep	Code	Lab Reporting Limit	Method	Holding Time
Leeds Point	Turbidity	FwSw	U	Turb	0.1 NTU	SM 2130 B-11	48 hours
Leeds Point	Total Suspended Solids	FwSw	U	TSS	1.0 mg/l	USGS I-3765- 85	24 hours
Leeds Point	Chlorophyll a (bay only)	Sw	U	Chla	0.42 ug/l	SM 10200-H 1+2	24 hours
Leeds Point	Total Nitrogen	FwSw	U	TN	0.1 mg/l	USGS I-4650- 03	28 days
Leeds Point	Total Phosphorus	FwSw	U	TP	0.010 mg/l	USGS I-4650- 03	28 days
Leeds Point	Dissolved Ammonia	FwSw	F	DNH3	0.025 mg/l	350.1 MOD	14 days
Leeds Point	Dissolved Nitrite + Nitrate	FwSw	F	DNO3	0.025 mg/l	EPA 353.4	28 days
Leeds Point	Dissolved Orthophosphate	FwSw	F	DPO4	0.005 mg/l	EPA 365.5	28 days
Leeds Point	Dissolved Nitrogen	FwSw	F	DN	0.1 mg/l	USGS I-4650- 03	28 days
Leeds Point	Dissolved Phosphorus	FwSw	F	DP	0.01 mg/l	USGS I-4650- 03	28 days
Leeds Point	Total Organic Nitrogen	FwSw	NA	TON	NA	Calculated	NA
Leeds Point	Dissolved Organic Nitrogen	FwSw	NA	DON	NA	Calculated	NA
Leeds Point	Dissolved Organic Phosphorus	FwSw	NA	DOP	NA	Calculated	NA
Leeds Point	Particulate Organic Nitrogen	FwSw	NA	PON	NA	Calculated	NA
Leeds Point	Particulate Phosphorus	FwSw	NA	PP	NA	Calculated	NA
Leeds Point	Alkalinity	FwSw	U	Alk	1.0 mg/l	SM 2320 B-11	14 days
Leeds Point	Biogenic Silica	FwSw	U	Si	0.05mg/l	EPA 366.0 MOD 6 months	
Leeds Point	Total Organic Carbon	Fw/Sw	U	TOC	1.0 mg/l	SM 5310 C	28 days
Leeds Point	Dissolved Organic Carbon	Fw/Sw	F	DOC	1.0 mg/l	SM 5310 C	28 days
Leeds Point	Particulate Organic Carbon	Fw/Sw	NA	POC	NA	Calculated	NA

Table 7: Lab Methods

16. Chain Of Custody

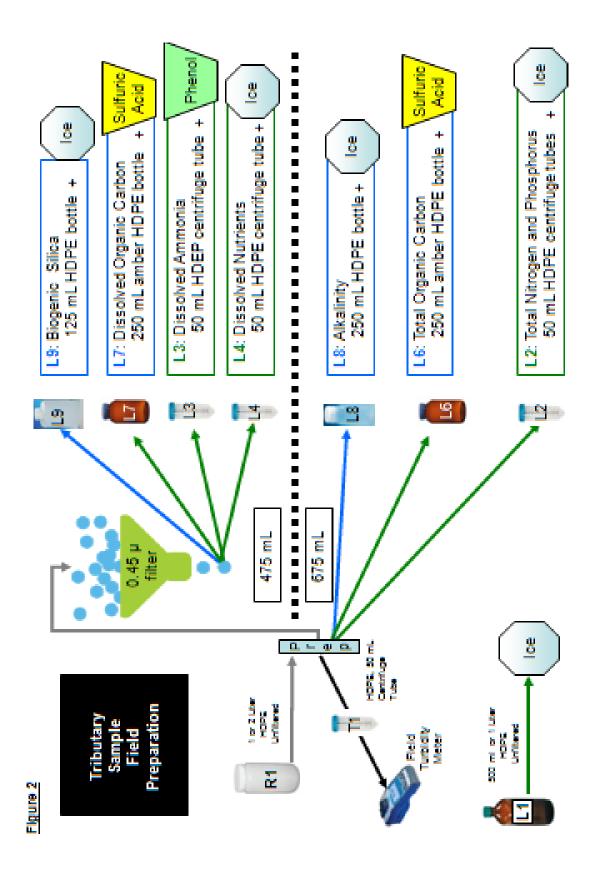
Chain of custody procedures will be instituted for this project. Chain of custody procedures will be employed until samples reach the appropriate laboratory. Once samples reach the laboratory the laboratories internal sample tracking procedures will be utilized. (See Appendix A for sample forms)

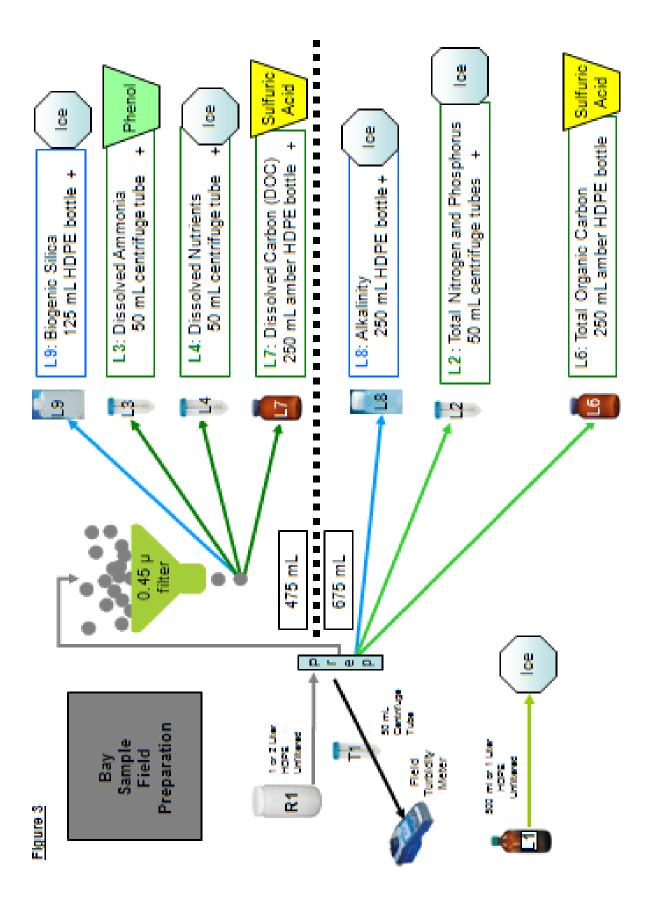
17. Corrective Action

The Leeds Point Laboratory is required to maintain standard operating procedures which outline specific action to pursue should corrective action be necessary. If acceptable results cannot be obtained due to: either field or laboratory errors (calibration standards, proficiency testing samples, blanks, spikes, or duplicates falling out of range) the affected samples will be re-analyzed and steps will be taken to ensure that the data produced is accurate. Standards and reagents will be replaced, equipment will be checked, or other action, will be taken to remedy the situation. NJDEP designated project officers and the NJDEP QAO will be notified in writing anytime a deviation from the approved work plan has occurred.

18. Assessment, Oversight and Response

The Project Officer will be responsible for the oversight of all activities relating to this project. The Project Officer will assess field collection functions and make corrections when necessary to maintain the data accuracy as defined in this plan. If any changes or modifications are made to this plan regarding data collection, as it relates to the objectives(s) and data accuracy required in this project, all original signees of the QAPP will be notified.




Figure 1: Barnegat Bay sampling sites

Appendix A: Sample Chain of Custody Form

		Gener	al Information		
Site #		Site Description		Sample #	(Site Number + Date)
Sample Collection Date (mm/dd/yyyy)		Sample Collector	, ,		Sample Blank
Sample Collection Time (hh:mm)		Collector Organization			Replicate
			Turbidity Surface		
Filtration Time (hh:mm)		Turbidity Measurements	Time (hh:mm) Turbidity (NTU)		
		Field Measure	ments/Observations		
	Surface	-	Surface		Comments
Field Measurement Time (hh:mm)		рН			
Sample Depth (ft)		Specific Conductance (circle units) uS/cm mS/cm			
Uncorrected Water Temperature (deg C)		Ambient Transmissionmetry			
Corrected Water Temperature (deg C)		Underwater Transmissionmetry			
Dissolved Oxygen (mg/l)		Salinity (ppth)			
Dissolved Oxygen Saturation (%)		Secchi Depth (ft)			
Container ID	Container	Ra Matrix	w Sample Parameter	Fraction	Preservative
[] L1-U					
[] R1-U	Amber HDPE, 500 mL or 1 L HDPE, 1L or 2L	Freshwater / Saltwater	TSS, Chlorophyll a NH3, NO2+NO3, PO4, TN, TP, Turbidity, TOC, DOC, Silica,Total Alkalinity	Total Total	lce, 4 deg C
[] L5 - U	Polyethylene , 2 X 1L	Saltwater	Phytoplankton	Total	0.5 % (v/v) glutaraldehyde, lce
			ory (NJ Lab Certification #: 01179)		
[] L1-U	Container Amber HDPE, 500 mL or 1 L	Matrix Freshwater / Saltwater	TSS, Chlorphyll a	Total	Preservative Ice, 4 deg C
[] L2-U	50 mL HDPE centrifuge tube	Freshwater / Saltwater	TN, TP	Total	Ice, 4 deg C
[] L3-F	50 mL HDPE centrifuge tube	Freshwater / Saltwater	DNH3	Dissolve d	2 ml 3.5% Phenol
[] L4-F	50 mL HDPE centrifuge tube	Freshwater / Saltwater	DNO3, DPO4, DN, DP	Dissolve d	Ice, 4 deg C
[] L5 - U	Polyethylene , 2 X 1 L	Saltwater	Phytoplankton	Total	0.5 % (v/v) glutaraldehyde, Ice
[] L6-U	125 mL HDPE	Freshwater/Saltwater	тос	Total	conc H_2SO_4 pH<2
[] L7-F	125 mL HDPE	Freshwater/Saltwater	DOC, DIC	Dissolve d	conc H ₂ SO ₄ pH<2
[] L 8- U	250 mL HDPE or glass	Freshwater / Saltwater	Total Alkalinity	Total	Ice, 4 deg C
[] L9-U	250 mL HDPE	Freshwater / Saltwater	Biogenic Silica	Total	Ice, 4 deg C
			in of Cusody		
Container ID R1, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10	Relinquished	Received	Date/Time Date: / / 2013 Time:		Reason Transfer to lab for analysis
			Date: / / 2013 Time:		
			Date: / /2013 Time:		

Appendix B: Sample Field Preparation Figures 2-3

Appendix C: Example Field Calibration

Field Calibration Record-Barnegat Bay Monitoring Project

pH Meter Calibration

Required Accuracy: ± 0.05 standard units (su) of the true value for the calibration buffers used, ± 0.10 for the mid-range calibration check buffer. The temperature of the buffers must be recorded (if available).

Buffer Temp "As Found" Meter Reading Set Meter Reading Time Date Tech

4.00

7.00

10.00

 Buffer used for Calibration Check:
 Temp of Buffer:

 Calibration Check Buffer result (performed in measure mode):
 Time of Calibration Check and Tech:

Conductivity Meter Calibration

Required Accuracy: Within 1% of the true value for the standard used.

Meter is calibrated according to manufacturer's instructions. Standard check is required each day of use.

mS/cm Standard used for Calibration Check (performed in measure mode):_____

Date of Calibration Check: _____

Tech:_

DO Meter Calibration
Meters are to be calibrated each day of use against air or water saturated air.
Meters also require a Winkler test each week of testing.
Required Accuracy between the Winkler titration and meter: ± 0.3 mg/L
Normality of Titrant (from container of sodium thiosulfate):
Beginning mls:
Ending mls:
Change in mls:
DO reading from Meter for the sample used for Winkler:
Tech:
Date:

Temperature Calibration

Thermometer calibrations must be performed on a quarterly basis prior to use for any sampling events. Records of the calibration will be retained.

Appendix D: Sampling Schedule

7/24/2013 8/7/2013 8/21/2013 9/4/2013 9/18/2013 10/16/2013 12/11/2013 2/12/2014 4/16/2014 5/7/2014? 5/21/2014? 6/4/2014

Note: this QAPP will be modified annually to add scheduled sampling dates beyond June 2014.