

Certified Irrigation Contractor Examination Equations

Basic and non-irrigation equations and conversions are assumed to be known by candidates. All citations refer to <u>Landscape Irrigation Contractor Workbook</u>, Irrigation Association. Feb. 2014. The equations are presented in the latest IA format and may appear different from those presented in the reference material.

1 cubic foot of water = 7.48 gallons

1 acre-inch = 27,154 gallons

1 acre-foot = 325,848 gallons

$H_{v} = \frac{V^{2}}{2 \times g}$	Eq. 3-1	Bhp = $\frac{\text{Whp}}{(E_p / 100)} = \frac{Q \times H}{3,960 \times (E_p / 100)}$	Eq. 3-3
$NPSHA = H_a - H_s - H_f - H_{vp}$	Eq. 3-2	AR {in. / h} = $\frac{231 \times \text{emitter flowrate {gph}}}{\text{emitter spacing {ft}} \times \text{row spacing {ft}}}$	Eq. 4-7
RT $\{h\} = \frac{\text{Daily waterneed } \{\text{in.}\}}{\text{AR } \{\text{in.} / h\}}$	Eq. 4-8	$ET_c = ET_o \times K_c$	Eq. 3-5
$ET_{L} = ET_{o} \times K_{L}$	Eq. 7-12	$PR = \frac{1.605 \times gph}{Area}$	Eq. 7-14
$RT = \frac{IR_{gross}}{PR} \times 60$	Eq. 7-15	Left blank intentionally.	
psi = feet of head × 0.433	Eq. 4-1	feet of head = psi×2.31	
$H_{_{f}} = 0.09019 \times \left(\frac{100}{C}\right)^{1.852} \times \frac{Q^{1.852}}{d^{4.866}}$	Eq. 4-3	$F_f = P \times \frac{\Delta p}{L}$	
$Q = A \times V$	Eq. 4-5a	$Q = \frac{\left[\left(ET_{o} \times K_{L}\right) - R_{E}\right] \times A \times 0.623}{E_{a}}$	Eq. 4-6
$CU = 100 \times \left(1 - \frac{\text{mean deviation}}{\text{mean}}\right)$	4-7	Left blank intentionally	

Certified Irrigation Contractor Examination Equations

$V = I \times R$	Eq. 5-1a	Left blank intentionally	
Left blank intentionally		$W = V \times I$	Eq. 5-4
$R = \frac{1,000 \times AVL}{}$	Eq. 5-5	$L = \frac{1,000 \times AVL}{}$	Eq. 5-6
$\frac{R-}{2\timesL\timesI}$		2×I×R	Lq. 5-0
$WC = \frac{WW - DW}{DW} \times 100$	Eq. 6-1	$AW_{D} = \frac{AW}{100} \times \frac{BD_{soil}}{BD_{water}} \times D$	Eq. 6-2
$RAW = AW \times \frac{MAD}{100}$	Eq. 6-3	$K_L = K_T \times K_d \times K_{mc}$	Eq. 6-4a
$K_L = K_P \times K_d \times K_{mc}$	Eq. 6-4b	Left blank intentionally	
Upwind distance =< 0.65,		$3.66 \times V_{avg}$	
Downwind distance	Eq. 7-1	$PR_{net} = \frac{3.66 \times V_{avg}}{t_{R} \times A_{CD}}$	Eq. 7-2
then the wind is over 5 mph			
$DU_{lq} = \frac{LQ_{avg}}{V_{avg}}$	Eq. 7-3	$SM = \frac{1}{0.4 + (0.6 \times DU_{lg})}$	Eq. 7-4
V _{avg}	Eq. 7 3	$0.4 + (0.6 \times DU_{lq})$	
$RT_{lower} = 60 \times \frac{Water need}{PR}$	Eq. 7-5	$RT_{upper} = RT_{lower} \times SM$	Eq. 7-6
PR			
_{DD} 96.3×Q	Eq. 7-7	pp_96.3×Q	Fa 7.0
$PR = \frac{96.3 \times Q}{A}$		$PR = \frac{96.3 \times Q}{A}; A = S_r \times S_s$	Eq. 7-8
96.3×Q	Eq. 7-9	96.3×Q	10
$PR = \frac{96.3 \times Q}{0.866 \times S_s^2}$		$PR = \frac{96.3 \times Q}{0.8 \times D_{t} \times S_{s}}$	Eq. 7-10
$d_{net} = AW \times Z_r \times p$	Eq. 7-10	$d_{max} = AW \times Z_r \times MAD$	Eq. 7-11
		$RT = \frac{ET_L \times 60}{}$	Eq. 7-13
$ET_{L} = ET_{o} \times K_{L}$	Eq. 7-12	PR	
SM - 1	Eq. 7-14	Sellingprice = Cost	
$ET_{L} = ET_{o} \times K_{L}$ $SM = \frac{1}{0.4 + (0.6 \times DQ_{lq})}$		1-Desired profit	