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A Marine Seismic Survey to Delineate
Tertiary and Quaternary Stratigraphy of Coastal Plain Sediments

Offshore of Atlantic City, New Jersey

ABSTRACT

A high-resolution marine seismic survey covering 19 square miles offshore of Atlantic City. New Jersey.
identified four geologic horizons along with bottom and subbottom features in the upper 1000 feet of Tertiary
and Quaternary sediments. Two sets of data were collected on a survey grid consisting of 100 to 120 line-miles

of sparker and boomer profiles. The data were used in conjunction with offshore drilling, onshore borehole,
and onshore geophysical data to determine the seaward characteristics and extent of units of the Kirkwood
Formation and contiguous units. The boomer prof'd_ also revealed a shallowly buried channel and two sand
ridges. The geophysical interpretations were used to position two offshore monitoring wells in the 800-foot
sand aquifer of the Kirkwood Formation.

INTRODUCTION

The New Jersey (N. J.) Geological Survey, with tech- trending survey lines, spaced at one-mile intervals, were
nical assistance provided by the New Jersey District of the approximately parallel to the southeastward regional dip.
U. S. Geological Survey, Water Resources Division, and Northeast-wending traverses were roughly parallel to the
the U. S. Geological Survey, Branch of Atlantic Marine regional strike and shoreline, ranging from half-mile inter-
Geology, conducted a marine seismic investigation off the vals nearshom to one mile intervals farther offshore.
coast of Atlantic City, New Jersey, in 1985. The purposes
of the seismic survey were to: 1) locate potential shallow
geologic hazards such as gas pockets, 2) delineate the off-

shore regional hydrostratigraphy, and 3) position two off-
shore ground-water monitoring wells.
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Location Figure 1. Map of New Jersey showing locations of Atlantic
The seismic survey grid extended from 0.5 to 5.7 miles City and the seismic survey area

off the coast of Atlantic City, N. J. (fig. 1). Four northwest-

MARINE SEISMIC REFLECTION

Marine seismic reflection enables the geophysicist to phones, located near the ocean surface. The method depends
determine geologic structure beneath the water surface by upon the transmission of pressure waves and their reflection

measuring the behavior of acoustic waves transmitted from from earth layers of different acoustic properties (fig. 2a).
a seismic source at the water surface and reflected from A reflection may be caused by a difference in water content,
bottom and subbettom features. The reflected response is sediment density, or small differences in lithology, but it
detected by pressure-sensitive transducers, called hydro-
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Figure 2a. Single-channel, continuous-refection, marine profiling operation and corresponding survey record (analog). The
analog record (at right) shows as shades of gray which correspond to reflected signal amplitudes (not recognizable at this
size). Interpreted reflected interfaces have been highlighted in white.
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Figure 2 b. Borehole seismic check-shot survey array showing the geometry of a three-layer case and the corresponding seismic
record. From these data, interval velocities can be calculated from the arrival times of the initial events.



usually results from gross changes in sediment type (Elliott Seismic velocity borehole check-shot survey

and Wiley, 1975). A check-shot survey is a method of determining the
In seismic profiles, the depths to reflecting surfaces are velocity of strata as a function of depth by lowering a

represented as a function of time. Depth information can be geophone into a borehole and recording the energy arrivals
obtained by converting the two-way traveltime values into from a shot point at the surface (fig. 2b). Seismic data are
depth, using velocities calculated from seismic reflection or recorded at set depths, from which interval velocities are

refraction data, borehole sonic logs, or seismic velocity calculated. The interval velocities can then be used to con-
borehole check-shot surveys. Velocity information for this vet1 two-way travel limes (from the seismic profdes) to depth.
survey is based on onshore seismic-reflection data, sub-

sequently rechecked with borehole check-shot surveys
from offshore monitor wells.

INSTRUMENTATION

Continuous seismic reflection profiling passes of 150-1000, 500-1000 and 500-1500 hertz for the

Marine seismic data were collected from 21 to29April boomer prof'des and 100-400 to 100-500 hertz for the
1985 aboard the N. J. Geological Survey research vessel sparker profiles. Resolution was about 3-5 feet for the
Richard J. Sullivan. High-resolution profiles of the shallow boomer prof'des and about 10-15 feet for the sparker profiles.

sediments were needed to assess possible geologic hazards The unfiltered analog data were recorded by an eight-
encountered in drilling offshore wells. A second set of track Hewlett-Packard 3968A Instrumentation recorder. An

profiles was collected using a higher-energy, lower-frequency event-time recorder (EPC 312 Record Annotator) correlated
system in order to obtain deeper peneteration. Accordingly, the data on tape "3 real time.
each trackline was run separately with the two systems.

Analog profiles were generated using an EPC Graphic
A boomer system (Ferranti O.R.E. Geopulse) was used Recorder. The sparker array sampled at 1-second intervals

for high-resolution profiles of the upper 300 feet of sedi- with a half-second recording (sweep) time. The transducer
ments. The transducer was powered by an EG&G Seismic array sampled at half-second intervals and was recorded at

Energy Source (234) generator at 200 joules. Seismic data a quarter-second sweep. Examples of sparker and trans-
to depths of 1800 feet were collected with an 800-joule ducer analog records, together with their stratigraphic inter-
sparker array and a Teledyne Exploration sparker energy pretation, offshore check-shot velocity histograms, and
source, borehole geophysical logs are shown in figures 3, 4, and 5.

An array of hydrophones (Del Norte), connected in

series-parallel, detected the reflected acoustic signals. A Navigation

Geopulse Receiver (ORE 5210A) with time-variant gain Navigational positioning was by loran-C. Measured
was used for the high-resolution shallow data. An In- loran time delays were interfaced with a real-time recorder
nerspace Preamplifier/Filter Model 202 with a TSS Model on digital tape for actual positioning during data acquisition.
307B amplifier and time-variant gain were used with the Fixes were plotted every five seconds.
sparker system. Analog filters were variably set at band-

INTERPRETATION

Time-to-depth correlation others (1984). Interval velocities from onshore data were

The offshore reflectors were correlated with known calculated using the formula of Dix (1955):

stratigraphic horizons by: 1) extrapolating the depths off- Onshore stratigraphic depths were obtained from three
shore using the regional dip, and 2) calculating interval nearby wells (well nos. 3, 4, and 5)(table 2, figs. 6-9). The
velocities and corresponding reflection coefficients. Inter- observed time values for the seismic profiles were converted
val velocities were by Miller and Dill (1973) from a bore- to depth by using the onshore interval velocities and off-
hole 3 miles offshore of Little Egg Inlet, from onshore shore velocity data (check-shot surveys from wells no. 1and
seismic reflection velocity tests collected by the N.J. no. 2). Each reflector was conelated along and between
Geological Survey, and from check-shot surveys at the two profdes.
offshore monitoring wells. The onshore seismic reflection

survey was 1 mile inland from the study area. High- Sparker data
resolution reflection velocity and depth information were
obtained for depths less than 1000 feet using methods The N. J. Coastal Plain consists of unconsolidated,
detailed in Hoffman and Waldner (1986) and Hunter and semiconsolidated, and less common consolidated deposits

of sand, silt, and clay ranging in age from Cretaceous to

3
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Figure 3. Represen_five an_og profile _ong sparker section (line D) approxima_ly parallel to dip.In_rpmted _flection interfaces highlighted by shading.Loc_ions of offsho_
wells ACOW no. 1and ACOW no. 2 projec_d _ section. Dep_ sefle approxim_e, based on the average velocity to the fourth (deepes0 reflector. Horizon_l scfle 1:50000.
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Figure 4. Sample of sparker section (line D) with check-shot velocity histogram and borehole logs forwell ACOW no. 1.Exact correlations between thecheck-shot velocity histogram
and borehole logs show apparent shifts which are caused by the greater comparative sampling interval and interval velocity calculations for the velocity data.
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histogram and borehole logs show apparent shif_ which _e caused by the g_ater comp_afive rumpling inte_ and inte_ velocity c_culations _r the velocity dam.

6



Quaternary (table 1).Figure 3 showsfourprominent reflec- Geophysical methods have been used to map areas of
tors corresponding to boundaries of some of the hydro- the Coastal Plain based on changes in the physical charac-
geologic units in the Kirkwood Formation. Borehole tefistics of hydrogeologic units (Sandberg and others,
gamma-gamma (density) logs from offshore and onshore Geophysical investigation of the Potomac-Raritan-Magothy
wells suggest that most of the CoastalPlain sediments have aquifer system in the northern Coastal Plain of New Jersey;
similar densities. As a result, most of the reflectors are due Mullikin and others, Hydrostratigraphy of the Kirkwood
tovelocity contrasts (whichcorrelate directly with the chan- Formation, manuscripts on f'deat the NJ. Geological Sur-
gesin calculated interval velocities), indicativeoflithologic vey).
change or physical water-bearing characteristics.

Table 1. Geologic and hydrogeologic units investigated in the Atlantic City marine seismic survey (table modified from New
Jersey Geological Survey, 1990).

AQUIFER NAME OR
SYSTEM SERIES GEOLOG IC UNIT OR UNITS LITHOLOGY HYDROGEOLOGIC

CHARACTERISTICS

Holo¢:en¢ alluvial, coastal,marshandeolian sand,gravel, slit, mud, andpeatdeposits

_' Pleistocene Wiso_nsinanalluvium, CapeMay
Formation,coUuvitwn sand,gravel slit. clay Under water*tableconditionsatmost

loeatinns

PmasaukcnFo_nation
sand,clayey silt

Bdligeton Formation.

Beacon Hill Gravel gravel, llght-colored,qua_z. sandy

i_. Cohansey Sand sand, medium ta coa_e, li_t-colored, quartz,

Miocene pebbly;local clay beds Kirkweod-Cohax_ey aquifersystem
confining unit

KirkwooliFormation sand, vet7 f'meto mcdith'n,gray and tin, quartz, RioGrandewater-bearingzone
mlcaeeous; dark-coloreddiatomaceous clay.

confining malt

Atlantic City 800-footsand

_ compmite eont-mdig unit(includes PineyMiocene- ACGS BetaUnli throughNavesink clayeyslit. sand,glauconitesand Point aquifer)• Upper Formation
_ Cretaceoos

Table 2. Records of wells used in the Atlantic City marine seismic survey (modified from Mullikin, 1990).

Well Permit Latitude/ Owner or Elevation Depth Type of
number number longitude name (ft)l drilled (fl)2 log3 Remarks

N391955 ACOW no. l marine

1 36-5615 W742507 U.S. Geol. Stu_ey -32 931 L,G observation well - inshore.

N391726 ACOW no. 2 marine
2 36-5972 W742221 U.S. Geol. Survey -43 1,025 L,G oh_e_'ation well - offshore.

N392108 Youngs
3 56-70 W747f_I0 OceanPier 20 2,306 L

N392124 Bally's Pa_ Place, 7 884 L,O4 36-108,1 W742604 Inc.

N392133 Resorts
5 36-964 8 887 LW742522 lntemalional

tElevatlon: feet above or below sea level as estiamind from U.S.G.S. 7.5-minute quadrangle map (contour interval l0 feet)
2Depth drilled: feet below land surface or, for wells 1 and 2, below sea floor
)I'y pe of log: L - Lithologlc, G - Borehole geophysical
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The two monitoring wells, ACOW no. 1 (1 mile off- Each of the four reflecting interfaces is stratigraphically
shore) and ACOW no. 2 (5 miles offshore), were drilled in continuous throughout the survey urea. Several zones along
July 1985 off the coast of Atlantic City (table 2), and are the reflection profiles, however, show discontinuous data
located within the geophysical survey grid (figs. 6-9). The indicating ureas of attenuamd seismic energy. These at-
N. J. District office of the U. S. Geological Survey, Water tenuation zones may be attributed to neur-surface, locally
Resources Division, collected several different geophysical thick, organic-rich sediments. Elliott and Wiley (1975) in-
borehole measurements in these offshore wells, including terpreted attenuation zones (bright spots) as zones of pus-
check-shot velocity data. The check-shot measurements siblegas-saturatedsedimentsoforganicorotherorigin.The
were reduced and interval velocity histograms were subbottom erosional features shown on the shallow profiles
projected to the nearest seismic profile, line D (figs. 4 and are inferred to he buried channels which may contain or-
5).For this representative profile (figs.3-5), the timevalues ganic-rich strata.
from the seismic prof'de have been converted to an ap-
proximate depth scale based on the average velocity to the Boomer data

deepest (fourth)reflector. The boomer data indicated two prominent geologic
Depth to the fourth reflecting interface was calculated features: 1) sand ridges and 2) subbottom, lens-shaped

using data from onshore wells and from inland reflection features (fig. 10) interpreted to he erosional surfaces of
velocity surveys. Well no. 3 was the only well topenetrate shallow channels (fig. 11).
a tightly-packed glauconitic sand below the fourth reflect-

ing interface at the top of basal clay unit. The two offshore Sand ridges
wells did not extend to the depth of the fourth reflector, and

The ridges are sea-floor features similar to others along
so an exact offshore interval velocity could not he deter- the Atlantic inner continental shelf. A continuous, north-
mined, east-trending sand ridge extends across the urea of the

Four hydrogeologic interfaces are identified bythe four survey grid, somewhat parallel to the present-day shoreline
reflectors. As shown by sparkerprofile D (fig. 3), these are, (fig. 11).A smaller,bifurcating ridge lies in the southeastern
from the top down: 1) the top of the confining unit above comer of the area. The deposition of offshore sand ridges
theRioGrandewater-heuringzoneoftheKirkwoodForma- has been studied for offshore Delaware (Moody, 1964;
tion, 2) the top of the confining unit below the Rio Grande Sheridan and others, 1974); for offshore New Jersey (Stub-
water-beuring zone of the Kirkwood Formation, 3) the base blefield and others, 1983; Swift and others, 1984;Charles-
of the confining unit below the Rio Grande water-bearing worth, 1968; Miller and Dill, 1973; Stahl and others, 1974)
zone of the Kirkwood Formation, and 4) the base of the and regionally along the northeastern U. S. coast (Schlee,
composite confining unit (table 1). 1973;Swift and others, 1973).

Calculated depths from average velocities were used to
construct contour maps of the four reflecting interfaces Subbottom erosional surface
(figs. 6-9).The maps show that the Kirkwood units continue The transducer profiles show buried channels (fig. 11).
the southeastward regional dipof about 30 feetper mile, and Vibracores fromcomparable channels, 15miles north of the
generally thicken seaward. The correlation of these off- study area, consist of organic-matter-rich sand and clay
shore hydrogeologic units with the land-based stratigraphy overlying gravelly sand (Miller and Dill, 1973). Similar
is incorporated into "Hydrostratigraphy of the Kirkwood channels were also studied in Delaware Bay (Knebel and
Formation" (Mullikin and others, manuscript on file at the Circe, 1988) and offshore Delaware (Sheridan and others,
N. J. Geological Survey). 1974).

CONCLUSIONS

A grid of seismic data was collected off the coast of thicken and maintain the regional dip. The shallow boomer
Atlantic City, N. J. Sparker records prof'ding to depths of records show lens-shaped features, interpreted to be buried
1,800 feet confirmed that major lithologic units within the channels, and two sand ridges.
Kirkwood Formation are continuous offshore and that they

12
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