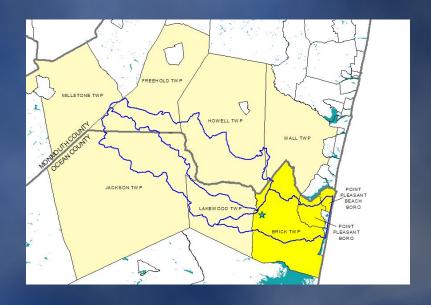
Brick Utilities Source Water Monitoring Program

NJ Water Monitoring Council Meeting


February 9, 2011

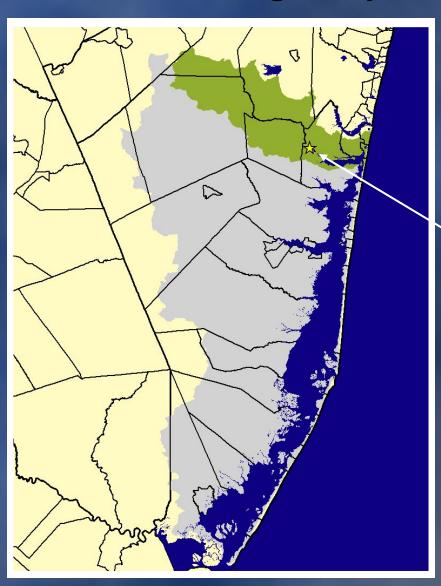
Robert Karl Source Water Supervisor

Brick Township MUA System Overview

- Provide drinking water to >100,000 people in Brick,
 Point Pleasant, Point Pleasant Beach, and Howell
- Drinking water and sewer collection service for Brick Township (wastewater sent to OCUA)

- Source water flexibility
 - Metedeconk River surface water intake
 - One-billion gallon pumped raw water storage reservoir
 - Additional water supplied by wells screened in the P-R-M & Kirkwood-Cohansey Aquifers
 - Aquifer Storage and Recovery (ASR) Well

Why a reservoir...?


- Short-term peak demands during summer months coupled with drought conditions are problematic without storage
- ◆ Northern Ocean County is located in Water Supply Critical Area #1 → Mandated water supply reductions from confined aquifers
- The 1996 New Jersey Statewide Water Supply Plan identified a significant projected water supply deficit for northern Ocean County

- 16 MGD conventional treatment plant
- Split treatment train capability

- Supervisory Control & Data Acquisition (SCADA)
- Water Treatment Facilities Study 2008
 - Goal was capacity increase to 22 MGD
 - Various alternatives examined
 - Recommendation: Retrofit dual-media (anthracite & sand) gravity filters w/ membrane filtration (MF)

BTMUA and Metedeconk Watershed in Relation to the Barnegat Bay Watershed

BTMUA

Source Water Protection & Management Philosophy

- Health of aquatic systems is declining nationwide
- Acute/chronic anthropogenic impacts
- Water industry: More effective to protect source than rely on WTP
- BTMUA relies on water quality/quantity of Metedeconk River and aquifers
- Obligation to protect our source water

Source Water Protection & Management Key Aspects

- Dedicated staffing and resources
- Water supply management
 - Watershed, reservoir, groundwater (incl. ASR)
- Water diversions
 - Allocation, availability, conjunctive use, environmental considerations
- Water treatment
 - Water quality
 - Blending sources
- Research participation (e.g. Water Research Foundation)

ALL OF THESE THINGS INVOLVE MONITORING

Source Water Monitoring Program

Two key objectives:

- 1. Support function for water treatment operations
 - Daily treatment decision-making
 - Source selection
 - Finished water quality (weather, sewer spills, hazmat incidents, algae blooms, taste & odor, etc.)
 - Treatment efficiency (chemical usage, energy, system demands, etc.)
 - Focus of real-time and daily watershed monitoring; weekly/monthly reservoir & well monitoring

Source Water Monitoring Program

Two key objectives:

- 2. Assessing long-term water supply issues/trends
 - Watershed health
 - Reservoir development
 - Well/groundwater trends
 - Research projects/studies
 - Water treatment (e.g. NOM/DBP precursors)
 - Emerging contaminants occurrence/fate (e.g. pharmaceuticals, PFOA, algal toxins, etc.)
 - Global warming/sea-level rise implications
 - Focus of quarterly or less frequent (or as-needed) watershed, reservoir & well monitoring

Reservoir Overview

- Capacity: 0.86 billion gallons
- ♦ 120 acre site
- Approx. 90 acres under water
- Pumped water storage no stream flow or directly contributing watershed
- ♦ Water delivery to reservoir via Metedeconk River intake
- Initially filled during a one-month period in April May 2004 to normal pool Elevation 100
- Depth of 33 46 ft
- Outlet Works Tower with sluice gates @ Els. 87 (-13 ft), 71 (-29 ft) and 54 (-46 ft)

Reservoir Overview (cont.)

- Aeration system consists of two (2) LayerAir Model PIP8
 Layer Aerators
 - Provide a mixed, aerated bottom water layer and enhanced mixing and aeration of the epilimnion by way of vented air from each tower
- ♦ Full artificial circulation diffusers at each tower station
- Liquid chemical delivery capabilities to the deep layer, surface layer, or full water column
- Two fishing/observation stations
- Public walking path & parking facilities

Reservoir Management Goals

- Assure the reservoir remains a high quality reserve raw water source that is available at all times
- Develop a healthy ecosystem
- Minimize chemical treatments for algae and taste-and-odor control to the greatest extent practical
- Keep the reservoir site aesthetically pleasing to the public
- Maintain full pool level to the greatest extent possible

- Extensive baseline water quality data collected since initial filling in 2004
- Monitoring plan updated annually
 - Assure critical parameters are monitored at appropriate frequencies
- Seasonal sampling schedule
 - Seasonal stratification / growing season
 - "Summer" (April October) weekly via boat
 - "Winter" (November March) monthly via boat

- ◆ Three (3) sampling stations
- Profiles at 1 meter intervals

- Grab samples at surface and sluice gate depths
- Straw phytoplankton sample
- Metedeconk monitoring data important to reservoir management (e.g. nutrient loading)
- Data stored in relational database

Secchi Disk

рН

Temperature

Dissolved Oxygen

DO Saturation

Specific Conductance

Total Dissolved Solids

Chlorophyll (sensor)

ORP

Turbidity

Blue-green algae (sensor)

Algae ID & Quant.

Zooplankton ID & Quant.

Nitrate

Nitrite

Ammonia

Phosphorus (TP, DP, o-P)

Soluble Silica (SiO₂)

Alkalinity

Chlorophyll A,B,C, Pheophytin

DIC, DOC, TOC

TKN

TSS

Metals

VOC's

Fecal Coliform

TPH

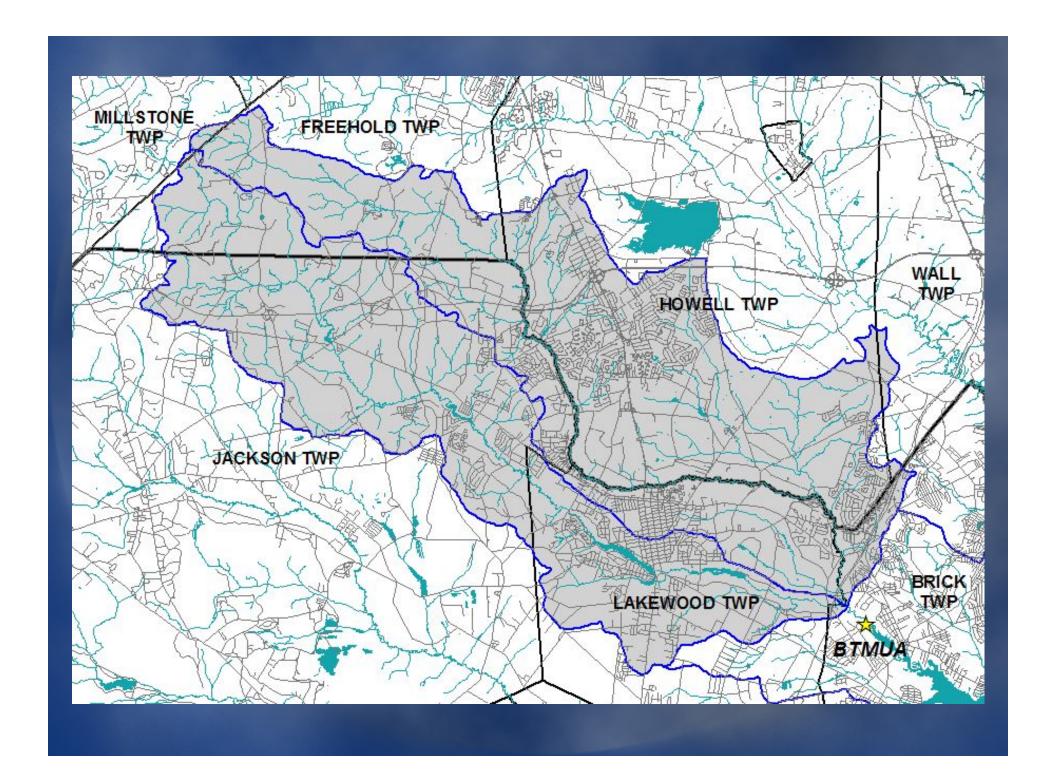
Oil & Grease

Geosmin & MIB

Fish Community

The Metedeconk River

- Metedeconk River has been BTMUA's primary source of water since ~1990
- → 70 square miles of the watershed is located upstream of the BTMUA's surface water intake
- North and South Branches
- Watershed is divided fairly evenly between Monmouth and Ocean Counties


Monmouth County

- ◆Freehold
- ◆Howell
- ◆Millstone
- ◆Wall

Ocean County

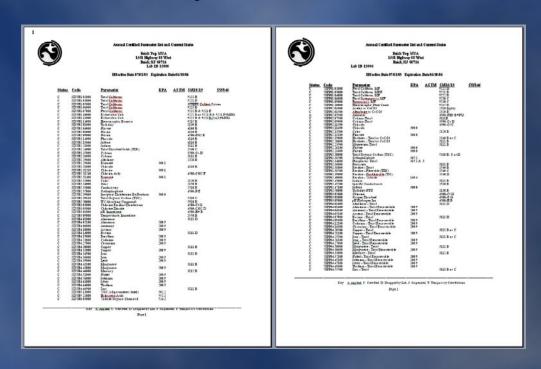
- **◆Brick**
- Jackson
- ◆Lakewood

The Metedeconk River Watershed

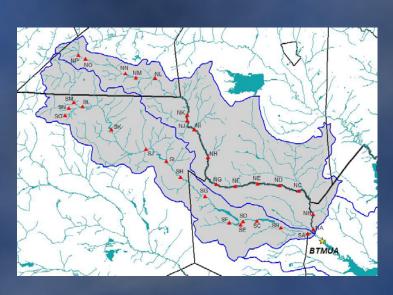
- Northern-most watershed "naturally" contributing to the Barnegat Bay
- Watershed characteristics are typical of the Barnegat Bay region:
 - Sandy, well-drained soils
 - Abundance of wetland areas
 - ♦ Gentle topography with few slopes > 5%
- Largely undisturbed riparian corridor (C1)
- Baseflow (i.e. groundwater stream discharge) accounts for roughly 70% of the flow in the Metedeconk River
- Few discharges stormwater/NPS is main concern

Objectives

- Ensure Metedeconk River water quality is acceptable for potable water supply
 - Public health (e.g. MCL's, emerging contaminants)
 - Aesthetics (taste and odor)
- Ensure water quality is acceptable for reservoir storage
- Identify specific sites that could jeopardize water quality/quantity
- Identify long-term trends in water quality/quantity and problem parameters
- Support programs aimed at protecting or restoring water quality
 - Regulatory (CWA/Integrated Report/SWQS/TMDL's)
 - Watershed management planning
 - Barnegat Bay Partnership


Approach/Methods

- Surface water grab samples & field measurements
- ♦ Real-time instruments → SCADA (alarms and archive)
 - Multi-parameter data sondes
 - S::CAN (continuous absorbance spectrum low UV to visible, 220-720 nm)
- Composite sampling (storm, reservoir filling)
- Sampling procedures and QA/QC
- Results entered into relational database
- Automatically updated queries/reports
- Periodic program evaluation and revision
- Quick turnaround from BTMUA's State-certified lab


BTMUA Laboratory

- BTMUA's regulatory and operational monitoring requirements
- Source water, treatment, distribution
- Numerous water utility clients

Daily Sampling

- Water treatment operations focus
- Field measurements and key in-house lab parameters
 - DO, Temperature, pH, Turbidity, Sp. Conductance/TDS, Ammonia
 - **♦** Fecal Coliform, E. Coli, TOC, VOC, Geosmin/MIB
- Sampling frequency weighted towards intake
 - Time of travel considerations
- Weekly schedule presently
- Sites of concern monitored
- Intake testing more comprehensive
- Quick turnaround by BTMUA lab
- Forge Pond salinity

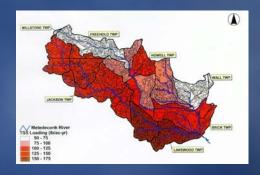
Quarterly/Biannual/Annual Sampling

- Long-term watershed health focus
- Subset of daily sampling sites
- Baseline data collected
- Major considerations in sampling design
 - SWQS (Parameters, HUC14 coverage)
 - Land use
- Field measurements and key lab parameters
 - ◆ ICPMS metals, Hg, TSS, TDS (lab), BOD/COD, TP, o-P, NO₃, NO₂, NH₄, TKN, Cl⁻, SO₄-², Hardness, O&G, TPH
 - Additions as needed

Resources Required

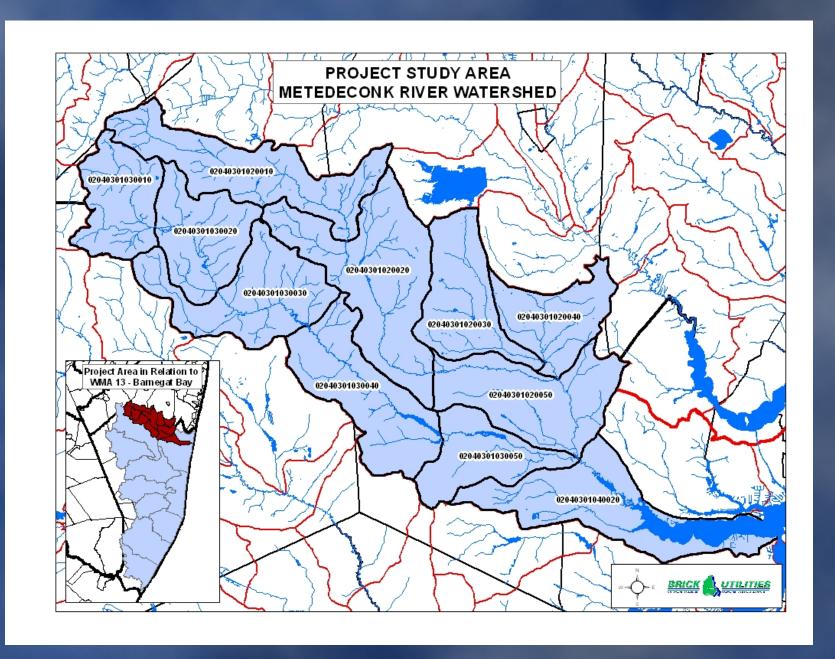
- Approximately \$150,000 annually required to maintain watershed and reservoir monitoring programs
 - Field staff
 - Capital costs (instruments, equipment)
 - Operating costs (materials, supplies, fuel, instrument maintenance & repairs)
 - Laboratory analytical costs (BTMUA and contract labs)

WQDE


- ◆ Training, defining fields, formatting data, initial upload to database
 - 155 hours for one individual (~3.5 weeks)
 - Paul Morton very helpful
- Updates ~2 hours/month

Issues/Challenges

- Data management and integration
- Identifying/incorporating new technology (e.g. s::can)
- Maintaining the most efficient program possible, given the objectives
 - Evaluating what is truly necessary
 - Are there better ways to meet the objectives?
- Is our stewardship philosophy appropriate given the costs?
 - Spill/contamination events are rare
 - Water quality is consistently very good
- Remote monitoring "sonde" stations prone to lightning, vandalism, flooding


Benefits/Uses of Monitoring Data

- Watershed Management
 - Pollutant loading/modeling
 - Track and illustrate water quality changes over time
 - Evaluating BMP/restoration effectiveness
 - Studies
 - Watershed Management Plan Phase 1 Characterization
 - Trust for Public Land Source Water Stewardship Pilot Project
 - Metedeconk Watershed Protection & Restoration Plan (underway)

Benefits/Uses of Monitoring Data (cont.)

- Better operational decision-making
 - WTP operations relies heavily on source water data
- Evaluating treatment disruptions
- Value to other agencies/programs (e.g. NJDEP, BBP)
- Research/investigations/studies (BTMUA, WRF and others)
- Climate change/sea level rise evaluation
- "Eyes and ears" on the watershed daily to identify potential problems
- Public relations (customers, State/county/local government, agencies, emergency responders, utilities, watershed community)

Robert Karl Source Water Supervisor Brick Township MUA 1551 Highway 88 West Brick, NJ 08724 (732) 458-7000 ext. 271 rkarl@brickmua.com

