Continuous Water Quality monitoring in New Jersey

Jack Gibs
U.S. Geological Survey
New Jersey Water Science Center
Hydrologic Data Assessment Program
West Trenton, New Jersey

Providing reliable, impartial, and timely data to assess the quantity and quality of New Jersey’s water resources
History of Continuous Water Quality Monitoring by USGS in NJ

- Water temperature monitored continuously on Delaware River in 1940’s
Why does USGS measure water quality parameters continuously?

- Investigate environmental processes
- Study trends
- Provide data to other agencies for stream classification and development of water quality standards
- Compute loadings to assist other agencies with TMDL studies
- To supply water purveyors with data needed to plan for water treatment needs
- Water supply planning
- Boaters and fishermen use data to plan activities
Advantages of continuous water quality data

- Measures the water quality changes at night and during storms when samples are seldom collected and storm events can have major effects on concentrations and loads.
- Faster data availability, critical for warning the public for recreation purposes and for water treatment purposes.
- Continuous data compared to a few samples collected during a year allows for better comparison to instream water-quality standards, especially criteria like DO based on 24 hour averages.
- Increased data-collection frequency improves understanding of cause-and-effect relations.
- Provides data sets for developing water quality models.
Active Continuous Water Quality Monitoring Locations

- 26 Water Temperature sites
- 8 D.O. & pH sites
- 10 SC sites
- 3 Turbidity sites
Real-time Continuous Dissolved Oxygen Data in New Jersey

http://nj.usgs.gov

Dissolved oxygen, water, unfiltered, milligrams per liter
Most recent instantaneous value: 9.8 08-05-2008 15:00

USGS 01400500 Raritan River at Manville NJ

Graph showing dissolved oxygen levels from July 29 to August 5, 2008.

Provisional Data Subject to Revision

- Dissolved oxygen
- ▲ Value exceeds "standard difference" threshold,

Legend:
- ▼: <1
- ▼: 1-2.9
- ▼: 2-4.9
- ▼: 4-6.9
- ▼: 6-8.9
- ▼: 8-11
- ▼: >11
- ▼: No Data

*Site operated on a seasonal basis or currently is not operating.
Continuous DO monitors

- AC power
- 4 of 8 are in heated enclosures and operate year round
- Sample water is pumped from stream
- 6 of 8 have optical sensors
Raritan River at Manville

Continuous QW Monitor

- Temp., SC, DO, DO%
- Sat., pH, Turbidity
- 120 volt submersible pump
- YSI 6920V2 in self draining flow tank

Satellite Telemetry at all continuous monitors
Sensor evaluations performed by the NJ-WSC

- Optical versus Polarographic DO
- Nitrate
 - Ion selective Electrode – YSI (only worked for 3 days)
 - Photometric Cadmium reduction (WS Oceans unit tested for 4 weeks) YSI model 9600 now in continuous service at Mississippi R. @ Baton Rouge & Atchafalaya R. @ Morgan City, LA
 - Ultraviolet-visible Spectrum analyzer (S::CAN currently being evaluated)
- DOC (S::CAN currently being evaluated- supported by DRBC)
Study comparing Clark cell to optical DO probe

- Optical dissolved oxygen sensor deployed in-tandem with a Clark-type sensor at Pompton Lakes, NJ.
- Optical sensor collected data over extended periods in summer and fall without correcting for drifts in calibration.

Results

- Optical sensor maintained calibration over a longer period of record allowing for greater time between servicing.
- Report published in USGS HIF instrument newsletter (internal website however)
- Successfully deployed for routine continuous monitoring at 6 sites in the Delaware River & Bay, & NJ Rivers
Comparison of YSI 6150 ROX and YSI 6652 Clark-style Sensors
(5/10/2007 to 9/04/2007)
Nitrate sensors

Automated colorimetric – Cadmium Reduction

- Very steep learning curve – proprietary software, operation of reagent metering and spectrophotometer
- Strong technical background needed to calibrate and troubleshoot instrument
- Liquid reagents are consumed
- Generates a hazardous waste – one mole of Cd generated for every mole of N reacted. 10 mg/l Cd, 3 mg/L Cu, pH ~2
- Battery powered
- Small footprint about the size of a 5 gallon bucket
- YSI 9600 is a better engineered package than WS Oceans, uses micropumps instead of a syringe pump
Nitrate & DOC Sensors, cont.

S::CAN Spectrolyzer — Funded by DRBC

- Proprietary software, fast learning curve
- Fresh water use only
- Quantification ~2 orders of magnitude
- High turbidity >120 NTU causes light extinction, 35 mm unit does not work
- No reagents
- Remote calibration by factory via cellular modem (required)
- Digital signal output is a European Union standard
- Analog output did not plug directly into USGS communication system
- Servicing frequency about 1 every 3 weeks to clean optic windows
- Direct comparison with lab data for 11 weeks and continuing for another 3 to 4 weeks
- Report in ~ 3 months after experiment completion
- Strong interest in this comparison and possible purchase of instrument by USGS HIF
Hurricane Hannah

--- Provisional Data Subject to Revision ---
Quality Assurance of Data

- Comparison to standards and field meter; fouling and drift
- USGS Report: Guidelines and Procedures for Continuous Water Quality Monitors: Station Operation, Record Computation, and Data Reporting
 http://pubs.usgs.gov/tm/2006/tm1D3/
USGS Resources

- Reports
 http://nj.usgs.gov/publications/OFR/02-383/
 - Techniques and Methods Report 1-D3: Guidelines and Procedures for Continuous Water Quality Monitors: Station Operation, Record Computation, and Data Reporting
 http://pubs.usgs.gov/tm/2006/tm1D3/
 - Techniques in Water Resources Investigations Reports
 Book 9 Section A: National Field Manual for Collection of Water Quality Data
Resources Continued

- New Jersey Water Science Center
 810 Bear Tavern Road Suite 206
 West Trenton, NJ 08628
 (609)771-3980
 http://nj.usgs.gov
 http://water.usgs.gov