Delaware River Basin Commission

Enhancing Data Interpretation in the Delaware River Basin with R

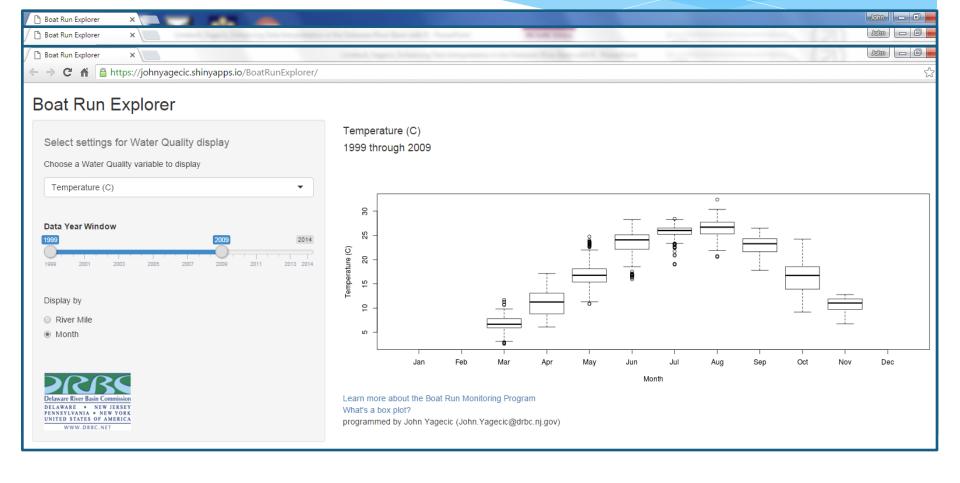
Robert LimbeckSenior Aquatic Biologist

John Yagecic, P.E.Manager, Water Quality Assessment

10th National Monitoring Conference Tampa, FL May 2016

This Presentation

- * Three Sample Projects by Delaware River Basin Commission
- Boat Run Explorer
- 2. Near real-time flow & water quality dashboards
- Optimization of complex response time for Dissolved Oxygen



Project 1: Boat Run Explorer

- * Wanted to foster better public engagement with long-running monitoring program;
 - Colleagues, stakeholders, students, public(?);
 - * What to show?
 - * Paper report? Would anyone read it?
 - * Able to be updated?

Boat Run Explorer

Boat Run Explorer Details

Direct Link

- * https://johnyagecic.shinyappi s.io/BoatRunExplorer/
- Shiny App hosted by the shiny apps io server;
- User selected time period;
- By River Mile or by month;
- * 1000s of combinations most of which we haven't seen;
- Links to program page and "what's a box plot"
 Wikipedia page;
- * Explore data spatial and temporal structure.

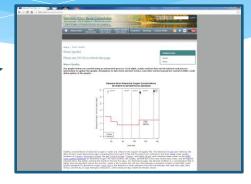
- * User selected parameter:
 - * Temperature;
 - * Salinity;
 - * Nitrate + Nitrite;
 - * DO;
 - * DO Sat;
 - * Secchi depth;
 - * Turbidity;
 - * Others.

Project 2: Daily Dashboards

- * Wanted near-real-time assessment of water quality and flow conditions;
 - * Take advantage of real-time data;
 - Better sense of system response & dynamics;
 - * Improved ability to:
 - * notify others
 - respond to problematic conditions;
 - remedy problematic conditions (if possible).
 - * http://drbc.net/Sky/flows.htm
 - * http://drbc.net/Sky/waterq.htm

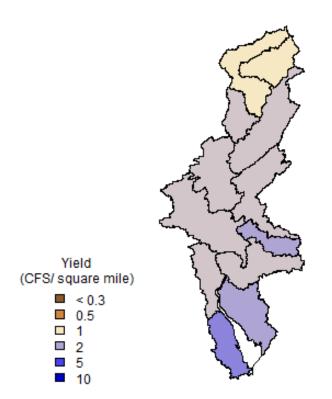
Automated Process for Generating Daily Dashboards

USGS NWIS



NOAA PORTS

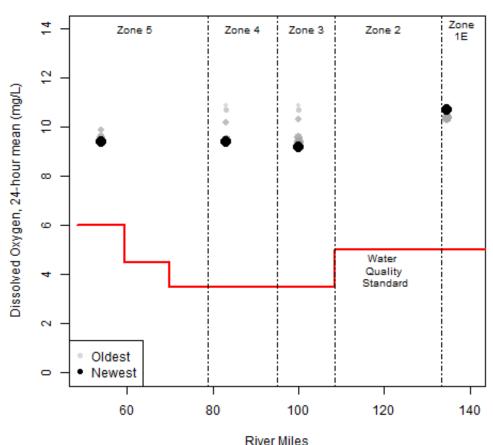
Web Site



- * Fully Automated
- * Overnight, every night
- R scripts executed in batch mode
- * Called by Windows TaskScheduler

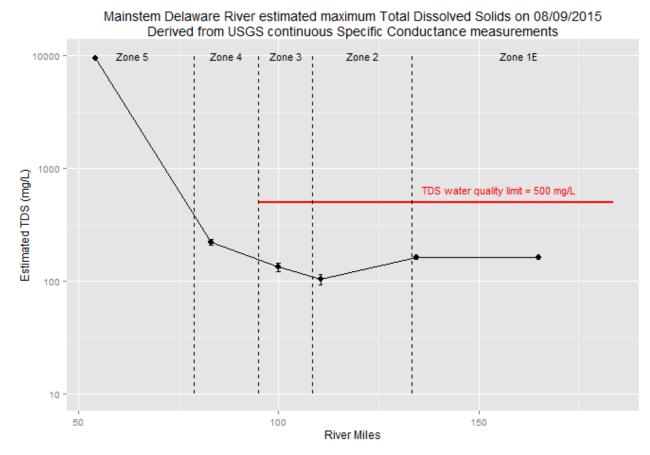
Daily Dashboard Features: Animated choropleth

Delaware Basin daily water Yield (CFS/square mile) on 01/28/2016



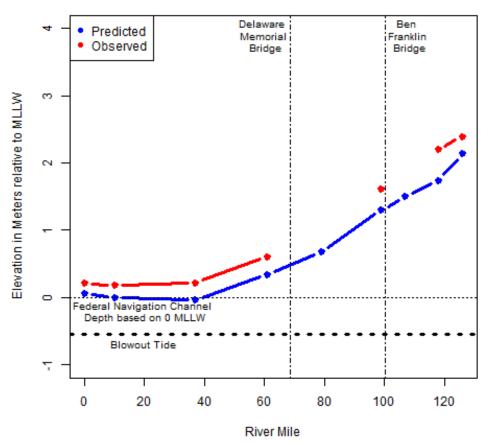
- * Retrieve daily mean Q from 140+ USGS gages in basin for previous 20 days;
- Divide daily Q by gage drainage area to get yield;
- Mean of all yields within a HUC8 for each day;
- * Animate over 20-day time series.

Do Assessment and Trending


Delaware River Dissolved Oxygen Concentrations 04/18/2015 to 04/23/2015 and Standards

- Retrieve daily mean DO from USGS sites last 5 days;
- * Plot compared to DO standards (red line);
- * Newest DO big dark dot;
- * Older DO smaller lighter dot.

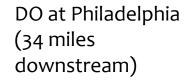
Daily Dashboard Features: Total Dissolved Solids near real-time



- Real time specific conductance data;
- Location specific relationships to compute TDS (black dot) from SC;
- * Compare nearreal-time computed TDS to standards (red line).

Daily Dashboard Features: **Animated Tidal Water Surface**

Delaware Estuary Water Surface Elevation, 02/05/2016 00:00 Data retrieved 02/09/2016

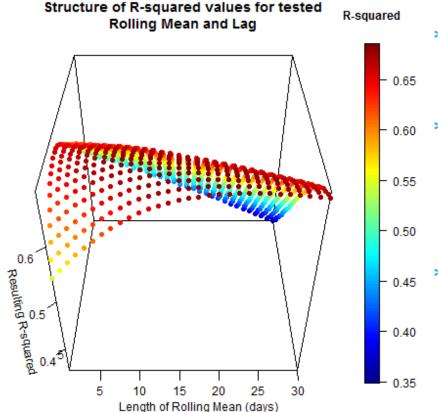


- Retrieve NOAA PORTS
 water surface time series
 data;
- observed last 5 days to predicted to end of today;
- Longitudinal plot for each time step;
- * Knit together to animation.

Project 3: Determine complex lag time between stimulus and response

Water Temperature Head of Tide (Trenton, NJ)

- Wanted to better understand relationships between stimulus and response variables;
- * Some relationship water temperature at Trenton and DO at Philadelphia but...
- * Travel time...
- Residence time in estuary much higher...
- * Lag time?
- * Rolling mean of multiple days?
- * Some combination of rolling mean and lag time?


Power of a scripting language for examining data

- * 10 years of daily data (USGS);
- * Can cycle through every combination of lag time, rolling mean (stimulus), lag + rolling mean;
- * 49,000 possible combinations
- * Separate linear regression model for each of 49,000
- Compare all resulting R² values

* pseudo-code only, not actual script

Complex Lag Time Result

- * Resulting R² values (vertical axis) have **structure** not random;
- * One combination is better than all other combinations;
 - * 16-day rolling mean temperature at Trenton lagged by 4 days;
- * Can understand something about system that would be difficult to determine any other way.

Thank You!

Delaware River Basin Commission

www.drbc.net

John.Yagecic@drbc.nj.gov Robert.Limbeck@drbc.nj.gov 609-883-9500

* P.S. – Always looking for collaborators to do something interesting.

