Meeting of Model Expert Panel with DRBC Staff

Report to the Water Quality Advisory Committee

Delaware River Basin Commission

March 1, 2018

Develop a technically sound eutrophication model for the Delaware Estuary and Bay utilizing the current state of the science within a timeframe established by the Commission

 Identify appropriate levels of source controls, especially in relation to dissolved oxygen

Approach

Develop a linked hydrodynamic and water quality model

Assess available data and conduct additional monitoring to fill gaps

- Sources
- Ambient water
- Calibrate linked model
 - Historical data
 - Intensive monitoring period 2018-2019
- Conduct forecast simulations with calibrated model
 - Determine levels of external sources required to achieve varying levels of ambient dissolved oxygen

Linked Model

Hydrodynamic Model: Environmental Fluid Dynamics Code (EFDC)

- Screening scale level (coarse grid)
- Full scale level (finer grid)
- Water Quality Model: Water Quality Analysis Simulation Program (WASP8)
- Both models supported by US EPA and widely used

Principal Mass Loadings and Fluxes

Presented to an advisory committee of the DRBC on March 1, 2018. Contents should not be published or re-posted in whole or in part without permission of DRBC.

Delaware River Basin Commission Delaware • New Jersesy PENNSYLVANIA • NEW YORK UNITED STATES OF AMERICA

Inflow Distribution

In m³/sec

Total Daily Average Inflow of 561 m³/sec

Presented to an advisory committee of the DRBC on March 1, 2018. Contents should not be published or re-posted in whole or in part without permission of DRBC.

Based on flows from February 1, 2002 to January 31, 2003 (from PCB TMDL work)

Estimation of Daily Nutrient Load for 2012 - 2013

- Based on monitored data: ~71 point sources
- Based on the approach used in the PWD modeling work
 - Delaware River at Trenton
 - Schuylkill River
 - 24 other tributaries
- PO4, NO23-N, NH3-N, NBOD and CBOD
- No estimations for CSOs, MS4s, direct NPS runoffs, atmospheric deposition, and open boundaries

Approach used in PWD modeling work:

- Set concentrations for 3 seasons, spring, summer and winter from data 1990-2013
- For each season, set concentrations for high and low flow conditions setting the deflection point from cumulative flow distribution curve of each season as a threshold flow – set at 80th percentile flow in this evaluation

PO4-P Load Estimation (2012 – 2013)

Total of 6,373kg/day of PO4-P

Delaware River Basin Commission Delaware • New Jerser PENNSYLVANIA • New YORK UNITED STATES OF AMERICA

WWTP Monitoring for 2018-2019

Expert panel endorsed additional monitoring for WWTP

Implementation plan for 2018-2019

Parameters

- Phosphorus: Total Phosphorus, Soluble Reactive Phosphorus (SRP)
- Nitrogen: Ammonia, NO3, NO2, TKN, SKN
- BOD5, CBOD5, CBOD20 (standard and modified methods), COD, TOC
- Temperature, D.O., Conductivity, pH
- Discharge flow (Q) hourly where available, daily otherwise

Ambient Monitoring for 2018-2019

Boat Run to year round

- Nitrate Spectral analyzers at Trenton (deployed January 2018) and Chester (to be deployed April 2018)
- Tributary monitoring at 25 stations 8 times per year
- Delaware at Trenton and Schuylkill at Philadelphia twice per month
- Primary productivity in upper estuary 2018
- Light extinction parameters in 2018

Progress to Date Hydrodynamic Model - EFDC

Environmental Fluid Dynamics Code (EFDC)

- Applied to a wide range of environmental studies
- Build-in linkage with WASP8

Model Calibration (2012 ~ 2013) Data and approach

NOAA stations:

- Tidal levels: 9
- Currents: 3
- Water temp.: 9
- Salinity: 2

Model Calibration (2012 ~ 2013) Preliminary Results

Water surface elevations and current velocities

- General agreement with observed data
- Under-prediction in some areas
- Water temperature
 - Better shape, but under-prediction during winter seasons at a few stations
- Salinity
 - Not calibrated yet

Progress to Date Water Quality Model – WASP8

• Eutrophication Process

- 5 phytoplankton classes
- 3 Periphyton/Macroalgae (benthic algae)
- Nutrient cycling N, P, Si
- 3 CBOD and dissolved oxygen
- pH and alkalinity
- Water Temperature

ENNSYLVANIA • NEW YORK NITED STATES OF AMERICA

Model Set Up (2012 ~ 2013) Status

- Computer code operational
- Assessing model state variables and processes
- Investigating specific model configuration for site and study objectives

Path Forward

Develop a 3-D model as a parallel track to the 2-D model simulation

Perform sensitivity analyses on salinity computations

Perform additional sensitivity and diagnostic analyses

Conduct preliminary analyses with WASP8 model

Implement recommendations for data collection

