Delaware River Basin Commission

Water Quality Improvements In the Delaware River Basin

Geological Association of New Jersey 2018 Annual Meeting

Battleship New Jersey, Camden, NJ October 19, 2018 John Yagecic, P.E., Namsoo Suk, Ph.D., and Steve Tambini, P.E.

Delaware River Basin Commission

Compact signed 1961

Equal Members:

- Delaware
- New Jersey
- Pennsylvania
- New York
- Federal Government

Broad Responsibilities / Authorities

- * Water Supply
- * Drought Management
- * Flood Loss Reduction
- * Water Quality
 - Establish Water Quality Standards
 - Monitoring & Assessment
 - Load Reductions
- * Watershed Planning
- * Regulatory Review (Permitting)
- * Outreach/Education
- * Recreation

In this presentation...

- * Historic and current estuary dissolved oxygen efforts
- * Polychlorinated Biphenyls
- * Nutrient Management under Special Protection Waters
- * Emerging Contaminants

Success No. 1 – Dissolved Oxygen

- * Historically, summer DO in estuary near Philadelphia was too low for migratory fish to reach upstream to spawn
- DRBC adopted water quality standards (1967) & wasteload allocation (1968)
- * Secondary treatment added at wastewater treatment plants 70's & 80's – funding CWA

Success No. 1 – Dissolved Oxygen

 * 3.5 mg/L criteria near Philadelphia, Camden, & Wilmington protect fish migration (not propagation)

By 2000's that criteria is nearly always met

Next Phase – Dissolved Oxygen

Adopt new designated use & DO criteria to support fish propagation

- Nutrient water quality model
- Engineering evaluation & cost estimate study
- Study of species DO needs

Success No. 2 - PCBs

- PCBs are probable human carcinogen
- Human exposure from fish & water consumption
- Delaware Estuary 100 to 1000X higher than criteria
- * DRBC developed TMDLs 2003 & 2006
- 90+ Point dischargers perform pollutant minimization plans – DRBC reviews
- * DRBC manages all the data from PMPs
- Decades long commitment
- * Stage 2 TMDL refinement

Success No. 3 – Nutrients & Special Protection Waters

- * Non-tidal River
- * Keep the clean water clean
- Significant alterations, new or expanding treatment plants must demonstrate to DRBC no measurable change to <u>existing</u> <u>water quality</u>
- * DRBC WQ models
- * Implementing for over a decade
- * 2016 DRBC Assessment showed improving nutrients since early 2000's
- * USGS report corroborated

Special Protection Waters

* It is the policy of the Commission that there be no measurable change in existing water quality except towards patural conditions in waters considered by the Commission to have exceptionally high scenic, recreational, ecological, and/or water supply values.

Sec 3.10.3A.2. Define this

Require Analysis to confirm this

Monitoring & Analysis to Define Existing Water Quality

TABLE 2I. Definition of Existing Water Quality: Easton ICP

Delaware River at Northampton Street Bridge, Easton-Phillipsburg, PA/NJ, River Mile 183.82

Parameter (V)	Definition of Existing Water Quality											
Farameter (T)	Median	Lower 95%Cl	Upper 95%Cl	Flow Relationships Site specific regression equation.								
Ammonia NH3-N (mg/l) *	<.05	<.05	< 0.05									
Chloride (mg/l)	16	14	17	Y = -0.00022184 Q + 16.751								
Chlorophyll a (mg/m ³)	1.45	1.07	2.14									
Dissolved Oxygen (mg/l) mid- day*	8.10	7.90	8.58									
Dissolved Oxygen Saturation (%)	95%	92%	96%									
E. coli (colonies/100 ml)	31	24	64	Y = antilog (0.00004425 Q + 1.273)								
Enterococcus (colonies/100 ml)	145	80	250									
Fecal coliform (colonies/100 ml) *	100	64	130									
Nitrate NO3-N (mg/l) *	0.85	0.70	0.90									
Orthophosphate (mg/l)	0.02	0.01	0.02									
pH	7.55	7.41	7.70									
Specific Conductance (umhos/cm)	142	127	155	Y = -0.0024666 Q + 158.76								
Total Dissolved Solids (mg/l)	110	103	120									
Total Kjeldahl Nitrogen (mg/l)	0.35	0.26	0.46									
Total Nitrogen (mg/l) *	1.19	1.01	1.35									
Total Phosphorus (mg/l) *	0.05	0.04	0.06									
Total Suspended Solids (mg/l) *	4.0	3.0	5.0	Y = 0.00177536 Q - 4.8027								
Turbidity (NTU)	2.6	1.8	4.0	Y = antilog (0.00003836 Q + 0.1845)								
Alkalinity (mg/l)	34	30	39	Y = -0.00073929 Q + 39.867								
Hardness (mg/l)	48	45	52									

Definitions of Existing Water Quality are contained in our Water Quality Regulations

Cumulative analysis with Water Quality Models

Neversink River Watershed (NY) (~ 20 dischargers)

Brodhead Creek Watershed (PA) (~ 30 dischargers)

Lehigh River Watershed (PA) (~ 65 dischargers)

Lower Delaware River (PA/NJ) (~ 100 dischargers)

Lower Delaware QUAL₂K Model

 Model to simulate nutrients and dissolved oxygen

* Steady flow, 1-D

Delaware

Water Gap

Summary Matrix of Measurable Changes: 440 Within-Site Comparisons at a Glance

Trenton

	Site Color Key			Dark Blue		Dark Red =Pennsylvania Tributary Boundary Control Point (BCP)									ireen =New Jersey Tributary Boundary Control Point (BCP)											
		Del. River	Del. River at	Pidcock	Delaware	Wicke-	Lockatong	Delaware	Pauna-	Tohickon	Tinicum	Nishi-	Del. River	Cooks	Musco-	Del. River	Pohat-cong	Lehigh	Del. River	Bushkill	Martins	Pequest	Del. River at	Paulins Kill	Del. River	
		at frenton	Crossing	Creek, PA	Lambrtvlle	Creek, NJ	Greek, NJ	Bulls Island	Creek, PA	Greek, PA	Creek, PA	Creek, NJ	at Millord	Creek, PA	River, NJ	at Riegisvii	Greek, NJ	River, PA	at Easton	Creek, PA	Greek, PA	River, NJ	Beividere	River, NJ	Portland	
	Parameter Site>	> 4242100	4448100	4463 BCD	4497100	4525 DCD	4540 BCD	4554100	4556 808	4570 BCD	4646 BCD	4644 BCD	4677 100	4727 BCD	4746 BCD	4749 100	4774 BCD	4827 BCD	4929 100	4844 BCD	4007 BCD	4078 BCD	4078 100	2070 BCB	2074 100	
		-> 1343 ICP	14161CP	1403 BCP	1467 ICP	1525 BCP	1540 BCP	155410P	1556 BCP	1370 BCP	1010 BCP	1641 BCP	16// ICP	1737 BCP	1740 BCP	174010P	1774 BCP	1037 BCP	103010P	1641 BCP	1907 BCP	1976 BCP	197610P	2070 BCP	2074 ICP	
Field	Dissolved Oxygen (DO) mg/l																									
	Dissolved Oxygen Saturation %			utrie	ent r	eduo	ction	S				~														
	pH, units		CC	orrot	bora	ted	bv sı	ıbse	aue	nt																
	Water Temperature, degrees C		U	SGS	asse	ssm	ent	usin	a																	
Nutrients	· · · · · · · · · · · · · · · · · · ·		di	ffor	ant c	lata	diff	eren	it i																	
	Ammonia Nitrogen as N, Total mg/l			othe		aca,	um	cici																		
	Nitrate + Nitrite as N, Total mg/l			etiit	Jus												**									
	Nitrogen as N, Total (TN) mg/l																**									
	Nitrogen, Kjeldahl, Total (TKN) mg/l																									
	Orthophosphate as P, Total mg/l															Go	od No	ews:								
	Phosphorus as P, Total (TP) mg/l															88	% of v	vater	qua	lity to	ests					
cteria	Enterococcus colonies/100 ml	~			~											sh	owed	no n	neasi	urabl	e ch	ange				
	Escherichia coli colonies/100 ml	**	**	**	**	**	**			**	**	**				to	FWO					0				
Bã	Fecal coliform colonies/100 ml																									
	Alkalinity as CaCO3, Total mg/l																									
als	Hardness as CaCO3, Total mg/l											~														
ion	Chloride, Total mg/l			**		**	**	**	**	**		**	**	**	**	**	**	**	~	**	**	**	**		**	
ent	Specific Conductance μmho/cm			**		**	**	~	**	**	**	**	**	**	**	~	**	**	~	~	~	**	~			
NNC.	Total Dissolved Solids (TDS) mg/l																									
ŏ	Total Suspended Solids (TSS) mg/l																									
	Turbidity NTU																									
	K	Y	= No indication	of measurable ch	ange to EWQ			**	= Indication of	Indication of measurable water quality change toward more degraded status							= Weak indication of measurable water quality change toward more degraded status									

In Each Case...

- * Fundamentals of mass loading rates, exposure pathways, chemical reactions, & water column response
 - water quality modeling, engineering, & technical analysis
- * Intensive monitoring
- * Point sources matter
- * Substantial Investment
 - Governments & grants
 - Dischargers & regulated community
- * Cooperation & coordination all pulling in the same direction

Emerging Contaminants Surveys Since 2004

- * DRBC Surveys in surface water, fish and sediment
 - * Pharmaceuticals and Personal Care Products (PPCP)
 - * Hormones
 - * Stain repellants/non-stick surfaces/fire fighting foams [PFAS]
 - * Flame Retardants [PBDE]
 - Detergents [NP]
 - Plasticizers [bis-phenol A]
- * Monitor Ambient Toxicity
- * Close coordination with States, TAC, & EPA
 - * Seeing reductions in ambient longer chain PFAS

Questions & Discussion? John.Yagecic@drbc. gov 609-883-9500 x271

