HAZARD SUMMARY

* Acrylonitrile can affect you when breathed in and by passing through your skin.
* Acrylonitrile is a CARCINOGEN--HANDLE WITH EXTREME CAUTION.
* Acrylonitrile should be handled as a TERATOGEN--WITH EXTREME CAUTION.
* Skin contact can cause severe irritation and blistering.
* Exposure to Acrylonitrile can irritate the eyes, nose, and throat.
* Breathing Acrylonitrile can irritate the lungs causing coughing and/or shortness of breath. Higher exposures can cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath.
* Exposure to Acrylonitrile can cause weakness, headache, dizziness, confusion, nausea, vomiting, and can lead to death.
* Repeated exposure can irritate the nose causing discharge, nosebleeds, and sores inside the nose.
* Acrylonitrile may affect the liver.
* Acrylonitrile is a FLAMMABLE and REACTIVE chemical and a FIRE and EXPLOSION HAZARD.

IDENTIFICATION

Acrylonitrile is a clear, colorless or slightly yellowish liquid with a faint odor. It is used to make synthetic fibers and polymers.

REASON FOR CITATION

* Acrylonitrile is on the Hazardous Substance List because it is regulated by OSHA and cited by ACGIH, DOT, NIOSH, NTP, DEP, IARC, IRIS, NFPA, and EPA.
* This chemical is on the Special Health Hazard Substance List because it is a CARCINOGEN and TERATOGEN, and is FLAMMABLE and REACTIVE.
* Definitions are provided on page 5.

HOW TO DETERMINE IF YOU ARE BEING EXPOSED

The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information and training concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard 29 CFR 1910.1200, requires private employers to provide similar training and information to their employees.

* Exposure to hazardous substances should be routinely evaluated. This may include collecting personal and area air samples. You can obtain copies of sampling results from your employer. You have a legal right to this information under the OSHA Standard 29 CFR 1910.1020.
* If you think you are experiencing any work-related health problems, see a doctor trained to recognize occupational diseases. Take this Fact Sheet with you.
* ODOR THRESHOLD = 1.6 ppm.
* The range of accepted odor threshold values is quite broad. Caution should be used in relying on odor alone as a warning of potentially hazardous exposures.

WORKPLACE EXPOSURE LIMITS

OSHA: The legal airborne permissible exposure limit (PEL) is 2 ppm averaged over an 8-hour workshift and 10 ppm, not to be exceeded during any 15 minute work period.

NIOSH: The recommended airborne exposure limit is 1 ppm averaged over a 10-hour workshift and 10 ppm, not to be exceeded during any 15 minute work period.

ACGIH: The recommended airborne exposure limit is 2 ppm averaged over an 8-hour workshift.

* Acrylonitrile is a PROBABLE CARCINOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
* Acrylonitrile may be a teratogen in humans. All contact with this chemical should be reduced to the lowest possible level.
* The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.
WAYS OF REDUCING EXPOSURE
* Enclose operations and use local exhaust ventilation at the site of chemical release. If local exhaust ventilation or enclosure is not used, respirators should be worn.
* A regulated, marked area should be established where Acrylonitrile is handled, used or stored as required by the OSHA Standard: 29 CFR 1910.1045 Acrylonitrile.
* Wear protective work clothing.
* Wash thoroughly immediately after exposure to Acrylonitrile and at the end of the workshift.
* Post hazard and warning information in the work area. In addition, as part of an ongoing education and training effort, communicate all information on the health and safety hazards of Acrylonitrile to potentially exposed workers.

This Fact Sheet is a summary source of information of all potential and most severe health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

HEALTH HAZARD INFORMATION

Acute Health Effects
The following acute (short-term) health effects may occur immediately or shortly after exposure to Acrylonitrile:

* Skin contact can cause severe irritation and blistering.
* Exposure to Acrylonitrile can irritate the eyes, nose, and throat.
* Breathing Acrylonitrile can irritate the lungs causing coughing and/or shortness of breath. Higher exposures can cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath.
* Exposure to Acrylonitrile can cause weakness, headache, dizziness, confusion, nausea, vomiting, and can lead to death.

Chronic Health Effects
The following chronic (long-term) health effects can occur at some time after exposure to Acrylonitrile and can last for months or years:

Cancer Hazard
* Acrylonitrile is a PROBABLE CARCINOGEN in humans. There is some evidence that it causes lung cancer in humans and it has been shown to cause brain, mammary, and stomach cancer in animals.
* Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard
* Acrylonitrile may be a TERATOGEN in humans since it has been shown to be a teratogen in animals.

Other Long-Term Effects
* Repeated exposure can irritate the nose causing discharge, nosebleeds, and sores inside the nose.
* Acrylonitrile may affect the liver.

MEDICAL

Medical Testing
For those with frequent or potentially high exposure (half the TLV or greater), the following are recommended before beginning work and at regular times after that:

* Urine thiocyanate levels.

If symptoms develop or overexposure is suspected, the following are recommended:

* Blood cyanide level.
* Consider chest x-ray after acute overexposure.
* Liver function tests

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are not a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under OSHA 1910.1020.

Mixed Exposures
* Because smoking can cause heart disease, as well as lung cancer, emphysema, and other respiratory problems, it may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems.
* Because more than light alcohol consumption can cause liver damage, drinking alcohol may increase the liver damage caused by Acrylonitrile.

WORKPLACE CONTROLS AND PRACTICES

Unless a less toxic chemical can be substituted for a hazardous substance, ENGINEERING CONTROLS are the most effective way of reducing exposure. The best protection is to enclose operations and/or provide local exhaust ventilation at the site of chemical release. Isolating operations can also reduce exposure. Using respirators or protective equipment is less effective than the controls mentioned above, but is sometimes necessary.

In evaluating the controls present in your workplace, consider: (1) how hazardous the substance is, (2) how much of the substance is released into the workplace and (3) whether harmful skin or eye contact could occur. Special controls should be in place for highly toxic chemicals or when significant skin, eye, or breathing exposures are possible.
In addition, the following controls are recommended:

* Where possible, automatically pump liquid Acrylonitrile from drums or other storage containers to process containers.
* Before entering a confined space where Acrylonitrile may be present, check to make sure that an explosive concentration does not exist.
* Specific engineering controls are required for this chemical by OSHA. Refer to the OSHA Standard: 29 CFR 1910.1045 Acrylonitrile.

Good WORK PRACTICES can help to reduce hazardous exposures. The following work practices are recommended:

* Workers whose clothing has been contaminated by Acrylonitrile should change into clean clothing promptly.
* Do not take contaminated work clothes home. Family members could be exposed.
* Contaminated work clothes should be laundered by individuals who have been informed of the hazards of exposure to Acrylonitrile.
* Eye wash fountains should be provided in the immediate work area for emergency use.
* If there is the possibility of skin exposure, emergency shower facilities should be provided.
* On skin contact with Acrylonitrile, immediately wash or shower to remove the chemical. At the end of the workshift, wash any areas of the body that may have contacted Acrylonitrile, whether or not known skin contact has occurred.
* Do not eat, smoke, or drink where Acrylonitrile is handled, processed, or stored, since the chemical can be swallowed. Wash hands carefully before eating, drinking, smoking, or using the toilet.

PERSONAL PROTECTIVE EQUIPMENT

WORKPLACE CONTROLS ARE BETTER THAN PERSONAL PROTECTIVE EQUIPMENT. However, for some jobs (such as outside work, confined space entry, jobs done only once in a while, or jobs done while workplace controls are being installed), personal protective equipment may be appropriate.

The OSHA Standard 29 CFR 1910.132 requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Clothing
* Avoid skin contact with Acrylonitrile. Wear protective gloves and clothing. Safety equipment suppliers/manufacturers can provide recommendations on the most protective glove/clothing material for your operation.

* Safety equipment manufacturers recommend Butyl Rubber, Viton®/Butyl, Silver Shield/4H®, Responder and Tychem BR/LV and 7K® as protective materials.
* All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection
* Wear indirect-vent, impact and splash resistant goggles when working with liquids.
* Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances.
* Contact lenses should not be worn when working with this substance.

Respiratory Protection

IMPROPER USE OF RESPIRATORS IS DANGEROUS. Such equipment should only be used if the employer has a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing and medical exams, as described in the OSHA Standard 29 CFR 1910.134.

* Where the potential exists for exposure over 1 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode.
* Exposure to 85 ppm is immediately dangerous to life and health. If the possibility of exposure above 85 ppm exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressure-demand or other positive-pressure mode equipped with an emergency escape air cylinder.

HANDLING AND STORAGE

* Prior to working with Acrylonitrile you should be trained on its proper handling and storage.
* A regulated, marked area should be established where Acrylonitrile is handled, used, or stored as required by the OSHA Standard 29 CFR 1910.1045 Acrylonitrile.
* Acrylonitrile is not compatible with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE); STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC); STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE); SILVER NITRATE; AMINES; COPPER; and COPPER ALLOYS.
* Store in tightly closed containers in a cool, well-ventilated area away from HEAT, LIGHT and COMBUSTIBLES.
* Sources of ignition, such as smoking and open flames, are prohibited where Acrylonitrile is used, handled, or stored.
* Metal containers involving the transfer of Acrylonitrile should be grounded and bonded.
* Use only non-sparking tools and equipment, especially when opening and closing containers of Acrylonitrile.
 QUESTIONS AND ANSWERS

Q: If I have acute health effects, will I later get chronic health effects?
A: Not always. Most chronic (long-term) effects result from repeated exposures to a chemical.

Q: Can I get long-term effects without ever having short-term effects?
A: Yes, because long-term effects can occur from repeated exposures to a chemical at levels not high enough to make you immediately sick.

Q: What are my chances of getting sick when I have been exposed to chemicals?
A: The likelihood of becoming sick from chemicals is increased as the amount of exposure increases. This is determined by the length of time and the amount of material to which someone is exposed.

Q: When are higher exposures more likely?
A: Conditions which increase risk of exposure include physical and mechanical processes (heating, pouring, spraying, spills and evaporation from large surface areas such as open containers), and "confined space" exposures (working inside vats, reactors, boilers, small rooms, etc.).

Q: Is the risk of getting sick higher for workers than for community residents?
A: Yes. Exposures in the community, except possibly in cases of fires or spills, are usually much lower than those found in the workplace. However, people in the community may be exposed to contaminated water as well as to chemicals in the air over long periods. This may be a problem for children or people who are already ill.

Q: Don't all chemicals cause cancer?
A: No. Most chemicals tested by scientists are not cancer-causing.

Q: Should I be concerned if a chemical causes cancer in animals?
A: Yes. Most scientists agree that a chemical that causes cancer in animals should be treated as a suspected human carcinogen unless proven otherwise.

Q: But don't they test animals using much higher levels of a chemical than people usually are exposed to?
A: Yes. That's so effects can be seen more clearly using fewer animals. But high doses alone don't cause cancer unless it's a cancer agent. In fact, a chemical that causes cancer in animals at high doses could cause cancer in humans exposed to low doses.
ACRYLONITRILE

DEFINITIONS

ACGIH is the American Conference of Governmental Industrial Hygienists. It recommends upper limits (called TLVs) for exposure to workplace chemicals.

A carcinogen is a substance that causes cancer.

The CAS number is assigned by the Chemical Abstracts Service to identify a specific chemical.

CFR is the Code of Federal Regulations, which consists of the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes irreversible damage to human tissue or containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group that classifies chemicals according to their cancer-causing potential.

IRIS is the Integrated Risk Information System database of the federal EPA.

A miscible substance is a liquid or gas that will evenly dissolve in another.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NAERG is the North American Emergency Response Guidebook. It was jointly developed by Transport Canada, the United States Department of Transportation and the Secretariat of Communications and Transportation of Mexico. It is a guide for first responders to quickly identify the specific or generic hazards of material involved in a transportation incident, and to protect themselves and the general public during the initial response phase of the incident.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEL is the Permissible Exposure Limit which is enforceable by the Occupational Safety and Health Administration.

PIH is a DOT designation for chemicals which are Poison Inhalation Hazards.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15-minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

TLV is the Threshold Limit Value, the workplace exposure limit recommended by ACGIH.

The vapor pressure is a measure of how readily a liquid or a solid mixes with air at its surface. A higher vapor pressure indicates a higher concentration of the substance in air and therefore increases the likelihood of breathing it in.
Common Name: ACRYLONITRILE
DOT Number: UN 1093 (Inhibited)
DOT Hazard Class: 3 (Flammable Liquid)
NAERG Code: 131P
CAS Number: 107-13-1

<table>
<thead>
<tr>
<th>Hazard rating</th>
<th>NJDHSS</th>
<th>NFPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAMMABILITY</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>REACTIVITY</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

CARCINOGEN AND TERATOGEN
FLAMMABLE AND REACTIVE
POISONOUS GASES ARE PRODUCED IN FIRE
CONTAINERS MAY EXPLODE IN FIRE

FIRE HAZARDS

* Acrylonitrile is a FLAMMABLE LIQUID.
* Use dry chemical, CO₂, water spray, or an alcohol-resistant foam or other foaming agent.
* POISONOUS GASES ARE PRODUCED IN FIRE, including Hydrogen Cyanide and Nitrogen Oxides.
* CONTAINERS MAY EXPLODE IN FIRE.
* Use water spray to keep fire-exposed containers cool.
* Vapors may travel to a source of ignition and flash back.
* Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source.
* If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Standard 29 CFR 1910.156.

SPILLS AND EMERGENCIES

If Acrylonitrile is spilled or leaked, take the following steps:

* Evacuate persons not wearing protective equipment from area of spill or leak until clean-up is complete.
* Remove all ignition sources.
* Cover with an activated charcoal adsorbent and place in covered containers for disposal.
* Ventilate and wash area after clean-up is complete.
* Keep Acrylonitrile out of a confined space, such as a sewer, because of the possibility of an explosion, unless the sewer is designed to prevent the build-up of explosive concentrations.
* It may be necessary to contain and dispose of Acrylonitrile as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.
* If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Standard 29 CFR 1910.120(q) may be applicable.

OTHER COMMONLY USED NAMES

Chemical Name: 2-Propenenitrile
Other Names: Acrylon; Vinyl Cyanide; Cyanoethylene

FOR LARGE SPILLS AND FIRES immediately call your fire department. You can request emergency information from the following:

CHEMTREC: (800) 424-9300
NJDEP HOTLINE: 1-877-WARN-DEP

HANDLING AND STORAGE (See page 3)

FIRST AID

For POISON INFORMATION call 1-800-222-1222

Eye Contact
* Immediately flush with large amounts of water for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately.

Skin Contact
* Quickly remove contaminated clothing. Immediately wash area with large amounts of water. Seek medical attention immediately.

Breathing
* Remove the person from exposure.
* Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
* Transfer promptly to a medical facility.
* Medical observation is recommended for 24 to 48 hours after breathing overexposure, as pulmonary edema may be delayed.

PHYSICAL DATA

Vapor Pressure: 86 mm Hg at 68°F (20°C)
Flash Point: 32°F (0°C)
Water Solubility: Soluble

NEW JERSEY DEPARTMENT OF HEALTH AND SENIOR SERVICES
PO Box 368, Trenton, NJ 08625-0368
(609) 984-2202