Common Name: LEAD NITRATE

Synonyms: Lead Dinitrate; Plumbous Nitrate

Chemical Name: Nitric Acid, Lead (2+) Salt

Date: September 2007 Revision: May 2017

CAS Number: 10099-74-8

RTK Substance Number: 1108

DOT Number: UN 1469

Description and Use
Lead Nitrate is a white or colorless, sand-like solid. It is used in making matches and special explosives, in the dye and photography industries, and in process engraving.

Reason for Citation
- Lead Nitrate is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, DEP, IARC and EPA.
- This chemical is on the Special Health Hazard Substance List.

Hazard Summary

<table>
<thead>
<tr>
<th>Hazard Rating</th>
<th>NJDOH</th>
<th>NFPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTH</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>FLAMMABILITY</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>REACTIVITY</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Carcinogen and Teratogen
Poisonous Fumes are produced in fire
Strong Oxidizer

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe

- Lead Nitrate can affect you when inhaled or swallowed.
- Lead Nitrate is a CARCINOGEN and may be a TERATOGEN—HANDLE WITH EXTREME CAUTION.
- Contact can irritate the skin and eyes.
- Inhaling Lead Nitrate can irritate the nose and throat.
- Exposure can cause headache, irritability, and muscle and joint pain.
- Repeated exposure can cause Lead poisoning with metallic taste, colic and muscle cramps.
- Lead Nitrate may damage the nervous system.
- Exposure may cause kidney and brain damage, and anemia.

Workplace Exposure Limits
The following exposure limits are for inorganic Lead compounds (measured as Lead):

OSHA: The legal airborne permissible exposure limit (PEL) is 0.05 mg/m³ averaged over an 8-hour workshift.

NIOSH: The recommended airborne exposure limit (REL) is 0.05 mg/m³ averaged over a 10-hour workshift. Air concentrations should be maintained so that blood Lead is less than 0.06 mg per 100 grams of whole blood.

ACGIH: The threshold limit value (TLV) is 0.05 mg/m³ averaged over an 8-hour workshift.

- Lead Nitrate is a PROBABLE CARCINOGEN and may be a TERATOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
LEAD NITRATE

Determining Your Exposure

- Read the product manufacturer’s Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health and Senior Services Hazardous Substance Fact Sheet, available on the RTK Program website (http://nj.gov/health/workplacehealthandsafety/right-to-know/) or in your facility’s RTK Central File or Hazard Communication Standard file.
- You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) requires private employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects
The following acute (short-term) health effects may occur immediately or shortly after exposure to Lead Nitrate:

- Contact can irritate the skin and eyes.
- Inhaling Lead Nitrate can irritate the nose and throat.
- Exposure can cause headache, irritability, reduced memory, disturbed sleep, and mood and personality changes.
- Contact can cause upset stomach, poor appetite, weakness and fatigue.

Chronic Health Effects
The following chronic (long-term) health effects may occur at some time after exposure to Lead Nitrate and can last for months or years:

Cancer Hazard
- Lead Nitrate is a PROBABLE CARCINOGEN in humans. There is some evidence that inorganic Lead compounds cause lung, brain, stomach, and kidney cancer in humans and they have been shown to cause kidney cancer in animals.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard
- Lead Nitrate may be a TERATOGEN in humans since it has been shown to be a teratogen in animals.

Other Effects
- Repeated exposure to Lead Nitrate can cause Lead poisoning. Symptoms include metallic taste, poor appetite, weight loss, colic, nausea, vomiting, and muscle cramps.
- Higher levels can cause muscle and joint pain, and weakness.
- High or repeated exposure may damage the nerves causing weakness, “pins and needles,” and poor coordination in the arms and legs.
- Lead exposure increases the risk of high blood pressure.
- Lead Nitrate may cause kidney and brain damage, and damage to the blood cells causing anemia.
- Repeated exposure causes Lead to accumulate in the body. It can take years for the body to get rid of excess Lead.

Medical

Medical Testing
Before first exposure, and every six (6) months thereafter, OSHA requires your employer to provide (for persons exposed to 30 micrograms or more of Lead per cubic meter of air for 30 days or more per year):

- Blood Lead test
- ZPP (a special test for the effects of Lead on blood cells)

For employees with blood Lead levels above 40 micrograms per 100 grams of whole blood (40 micrograms per deciliter), OSHA requires blood Lead level monitoring every two months until two consecutive blood Lead levels are below 40 micrograms per 100 grams of whole blood. These employees must undergo a medical evaluation, which should include:

- Complete work and medical history
- Thorough physical examination, including examination of the central nervous system
- Blood Lead test
- ZPP
- Hemoglobin, hematocrit with complete blood count
- Urinalysis with microscopic examination
- Any other tests determined necessary by the examining physician

This evaluation should be performed at least annually.

OSHA requires your employer to provide you and your doctor with a copy of the OSHA Lead Standards (29 CFR 1910.1025 and 1926.62).

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are not a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).
LEAD NITRATE

Mixed Exposures
- Body exposures to Lead from hobbies using Lead solder or pigments, target practice, and drinking moonshine made in Leaded containers will increase Lead levels. Repeated breathing or handling of Leaded gasoline may also add to body Lead levels.

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:
- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.

In addition, the following may be useful or required:
- Specific engineering controls are required for this chemical by OSHA. Refer to the OSHA Lead Standards (29 CFR 1910.1025 and 1926.62).
- Use a vacuum or a wet method to reduce dust during clean-up. DO NOT DRY SWEEP.
- When vacuuming, a high efficiency particulate air (HEPA) filter should be used, not a standard shop vacuum.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing
- Avoid skin contact with Lead Nitrate. Wear personal protective equipment made from material which can not be permeated and/or degraded by this substance. Safety equipment suppliers/manufacturers can provide recommendations on the most protective glove/clothing material for your operation.
- Safety equipment manufacturers recommend Nitrile, Latex, or Rubber for gloves and DuPont Tyvek® as protective material for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection
- For impact hazards (such as flying fragments, chips or particles), wear safety glasses with side shields or safety goggles.
- Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances.

Respiratory Protection

Improper use of respirators is dangerous.

Such equipment should only be used if the employer has a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure not higher than 0.5 mg/m³ (as Lead), use a half-mask air purifying respirator equipped with high efficiency filters.
- Where the potential exists for exposure not higher than 2.5 mg/m³ (as Lead), use a full facepiece, air purifying respirator with high efficiency filters.
- Where the potential exists for exposure not higher than 50 mg/m³ (as Lead), use any powered-air purifying respirator with high efficiency filters or a half-mask supplied-air respirator operated in a positive pressure mode.
- Leave the area immediately if (1) while wearing a filter or cartridge respirator you can smell, taste, or otherwise detect Lead Nitrate, (2) while wearing particulate filters abnormal resistance to breathing is experienced, or (3) eye irritation occurs while wearing a full facepiece respirator. Check to make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer good, you may need a new respirator.
- Be sure to consider all potential exposures in your workplace. You may need a combination of filters, prefilters, cartridges, or canisters to protect against different forms of a chemical (such as vapor and mist) or against a mixture of chemicals.
- Where the potential exists for exposure not higher than 100 mg/m³ (as Lead), use supplied-air respirators with full facepiece, hood, helmet or suit, operated in a positive pressure mode.
- Exposure to 100 mg/m³ (as Lead) is immediately dangerous to life and health. If the possibility of exposure above 100 mg/m³ (as Lead) exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressure-demand or other positive-pressure mode equipped with an emergency escape air cylinder.
LEAD NITRATE

Fire Hazards
If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- USE WATER ONLY. DO NOT USE CHEMICAL or CO₂ extinguishing agents.
- POISONOUS FUMES ARE PRODUCED IN FIRE, including Lead Oxides and Nitrogen Oxides.
- Use water spray to keep fire-exposed containers cool.
- Lead Nitrate may ignite combustibles (wood, paper and oil).

Spills and Emergencies
If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Lead Nitrate is spilled, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- Collect powdered material by moistening spilled material, or use a HEPA-filter vacuum, and deposit into sealed containers.
- Ventilate and wash area after clean-up is complete.
- DO NOT wash into sewer.
- It may be necessary to contain and dispose of Lead Nitrate as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage
Prior to working with Lead Nitrate you should be trained on its proper handling and storage.

- A regulated, marked area should be established where Lead Nitrate is handled, used, or stored.
- Lead Nitrate is a STRONG OXIDIZER which reacts with HYDROGEN PEROXIDE; REDUCING AGENTS; POWDERED CARBON; LEAD HYPOPHOSPHITE; AMMONIUM THIOCYANATE; POTASSIUM ACETATE; and POWDERED METALS.
- Store in tightly closed containers in a cool, well-ventilated area away from ORGANICS and COMBUSTIBLE MATERIALS.

Occupational Health Information Resources
The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:
New Jersey Department of Health
Right to Know Program
PO Box 368
Trenton, NJ 08625-0368
Phone: 609-984-2202
Fax: 609-984-7407
E-mail: rtk@doh.nj.gov
Web address:
http://nj.gov/health/workplacehealthandsafety/right-to-know/

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.
GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The CAS number is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database maintained by federal EPA. The database contains information on human health effects that may result from exposure to various chemicals in the environment.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

PHI is a DOT designation for chemicals which are Poison Inhalation Hazards.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15-minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually Hydrogen), at the same temperature and pressure.

The vapor pressure is a measure of how readily a liquid or a solid mixes with air at its surface. A higher vapor pressure indicates a higher concentration of the substance in air and therefore increases the likelihood of breathing it in.
Common Name: LEAD NITRATE

Synonyms: Lead Dinitrate; Plumbous Nitrate

CAS No: 10099-74-8

Molecular Formula: Pb(NO$_3$)$_2$

RTK Substance No: 1108

Description: White or colorless, sand-like solid

HAZARD DATA

<table>
<thead>
<tr>
<th>Hazard Rating</th>
<th>Firefighting</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - Health</td>
<td>USE WATER ONLY. DO NOT USE Chemical or CO$_2$ extinguishing agents.</td>
<td>Lead Nitrate reacts with HYDROGEN PEROXIDE; REDUCING AGENTS; POWDERED CARBON; LEAD HYPOPHOSPHITE; AMMONIUM THIOCYANATE; POTASSIUM ACETATE; and POWDERED METALS.</td>
</tr>
<tr>
<td>0 - Fire</td>
<td>POISONOUS FUMES ARE PRODUCED IN FIRE, including Lead Oxides and Nitrogen Oxides.</td>
<td>Lead Nitrate is a STRONG OXIDIZER which may ignite ORGANICS and COMBUSTIBLE MATERIALS.</td>
</tr>
<tr>
<td>0 - Reactivity</td>
<td>Use water spray to keep fire-exposed containers cool.</td>
<td>Lead Nitrate may ignite combustibles.</td>
</tr>
</tbody>
</table>

DOT#: UN 1469

ERG Guide #: 141

Hazard Class: 5.1 (Oxidizer)

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor Threshold</td>
<td>No information</td>
</tr>
<tr>
<td>Flash Point</td>
<td>554°F (290°C)</td>
</tr>
<tr>
<td>LEL:</td>
<td>N/A</td>
</tr>
<tr>
<td>UEL:</td>
<td>N/A</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>11.0 (air = 1)</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>Soluble</td>
</tr>
<tr>
<td>pH</td>
<td>3 to 4</td>
</tr>
<tr>
<td>Melting Point</td>
<td>878°F (470°C)</td>
</tr>
</tbody>
</table>

PROTECTIVE EQUIPMENT

- **Gloves:** Nitrile, Latex, Rubber
- **Coveralls:** DuPont Tyvek®
- **Boots:** Latex, Butyl, Neoprene
- **Respirator:**
 - $\leq 0.5 \text{ mg/m}^3$ - N100 (as Lead)
 - $\leq 2.5 \text{ mg/m}^3$ (as Lead) - full facepiece APR with High Efficiency filters
 - $\leq 50 \text{ mg/m}^3$ (as Lead) - full facepiece powered APR with High Efficiency filters
 - $\leq 100 \text{ mg/m}^3$ (as Lead) - Pressure-demand supplied-air
 - $>100 \text{ mg/m}^3$ (as Lead) - Pressure-demand SCBA

EXPOSURE LIMITS

- **OSHA:** 0.05 mg/m3, 8-hr TWA (as Lead)
- **NIOSH:** 0.05 mg/m3, 10-hr TWA (as Lead)
- **ACGIH:** 0.05 mg/m3, 8-hr TWA (as Lead)
- **IDLH LEVEL:** 100 mg/m3 (as Lead)
- **PAC LEVELS:** PAC-1 = 0.24 mg/m3; PAC-2 = 180 mg/m3; PAC-3 = 1,100 mg/m3

HEALTH EFFECTS

- **Eyes:** Irritation
- **Skin:** Irritation
- **Acute:** Headache, irritability, upset stomach, and weakness
- **Chronic:** Inorganic Lead compounds may cause lung, brain, stomach, and kidney cancer in humans. May be a teratogen in humans. Metallic taste, colic, muscle cramps Damage to the nervous system

FIRST AID AND DECONTAMINATION

- **Remove** the person from exposure.
- **Flush** eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn.
- **Remove** contaminated clothing and wash contaminated skin with water.
- **Transfer** to a medical facility.