The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation

Laura Bianchi¹, Beate Gerstbrein¹, Christian Frøkjær-Jensen², Dewey C Royal¹, Gargi Mukherjee¹, Mary Anne Royal¹, Jian Xue¹, William R Schafer² & Monica Driscoll¹

Hyperactivation of the *Caenorhabditis elegans* MEC-4 Na⁺ channel of the DEG/ENaC superfamily (MEC-4(d)) induces neuronal necrosis through an increase in intracellular Ca²⁺ and calpain activation. How exacerbated Na⁺ channel activity elicits a toxic rise in cytoplasmic Ca²⁺, however, has remained unclear. We tested the hypothesis that MEC-4(d)-induced membrane depolarization activates voltage-gated Ca²⁺ channels (VGCCs) to initiate a toxic Ca²⁺ influx, and ruled out a critical requirement for VGCCs. Instead, we found that MEC-4(d) itself conducts Ca²⁺ both when heterologously expressed in *Xenopus* oocytes and *in vivo* in *C. elegans* touch neurons. Data generated using the Ca²⁺ sensor cameleon suggest that an induced release of endoplasmic reticulum (ER) Ca²⁺ is crucial for progression through necrosis. We propose a refined molecular model of necrosis initiation in which Ca²⁺ influx through the MEC-4(d) channel activates Ca²⁺-induced Ca²⁺ release from the ER to promote neuronal death, a mechanism that may apply to neurotoxicity associated with activation of the ASIC1a channel in mammalian ischemia.

Rises in intracellular Ca^{2+} have crucial roles in promoting apoptosis¹ and necrosis², contributing to the debilitating neuronal damage that accompanies ischemia, injury and neurodegenerative disease³. The ER can be the source of a life-threatening increase in Ca^{2+} in these conditions^{3–5}. Despite considerable therapeutic relevance, however, the molecular mechanisms by which the neurotoxic release of Ca^{2+} from ER stores is provoked are not well understood.

Hyperactivation of ion channels initiates excitotoxicity and underlies several inherited neurodegenerative disorders across species⁶⁻⁸. One of the best-studied genetic initiators of necrosis is C. elegans mec-4(d), which encodes a mutant subunit of the DEG/ENaC Na⁺ channel superfamily^{6,9}. Wild-type MEC-4 functions as the core subunit of a multimeric mechanically gated Na⁺ channel complex^{10–12} that is normally activated in response to gentle touch stimuli¹³. The neurotoxic change in MEC-4(d) is a large side chain amino-acid substitution adjacent to, or part of, the channel pore (A713V or A713T^{6,9}). Analogous substitutions in heterologously expressed MEC-4(d) and other neuronal DEG/ENaC channels markedly enhance channel activity^{10,14–17}. The mammalian acid-sensing ion channel (ASIC) subfamily can influence cutaneous mechanoreceptor function¹⁸ and contribute to pain sensation, synaptic plasticity, fear conditioning^{19,20} and cell loss in tissue acidosis^{21,22}. Similar to other members of the DEG/ENaC family, the MEC-4(d) channel is inhibited by amiloride¹⁰.

In vivo, *mec-4(d)*-induced neuronal death requires the function of ER Ca²⁺-storing proteins calreticulin and calnexin as well as ER Ca²⁺ release channels⁵, suggesting that the ER regulates an essential cytoplasmic concentration of Ca²⁺ required for progression through necrosis.

When the intracellular Ca²⁺ concentration rises to a neurotoxic threshold, specific Ca²⁺-activated calpain proteases function to dismantle the neuron²³. Ion channel hyperactivation, the requirement for a rise in intracellular Ca²⁺, and calpain activation are common features of mammalian necrosis, indicating that, similar to apoptosis²⁴, necrotic neuronal death occurs by an evolutionarily conserved mechanism⁸.

A key issue in the nematode necrosis model, which is relevant to problems in mammalian traumatic neuronal injury and channelinduced death, is how an increase in Na⁺ influx might provoke release of Ca²⁺ from the ER, the paradox being that Ca²⁺ release from the ER is usually induced by signals that are not dependent on Na⁺, namely, inositol (1,4,5)-trisphosphate (IP3) or Ca²⁺ itself^{25,26}. Here we report that the MEC-4(d) Na⁺ channel conducts Ca²⁺, suggesting that a Ca²⁺ influx via the MEC-4(d) channel directly signals the release of Ca²⁺ from the ER. Our data require a rethinking of the mechanism by which DEG/ENaC channels can be neurotoxic and implicate Ca²⁺-induced Ca²⁺ release in necrosis initiation.

RESULTS

VGCCs are not required for mec-4(d)-induced necrosis

We tested the hypothesis that hyperactivation of the MEC-4(d) channel induces secondary Ca²⁺ influx through plasma membrane sources. In response to gentle touch, *mec-4*(+) touch receptor neurons generate Ca²⁺ transients that depend on MEC-4 as well as on the EGL-19 α and UNC-36 α -2/ δ L-type VGCC subunits¹³. To test whether Ca²⁺ influx through these or other VGCC subunits are needed for necrosis (**Fig. 1a**), we constructed double mutants of *mec-4*(*d*) and

Published online 7 November 2004; corrected 14 November 2004 (details online); doi:10.1038/nn1347

¹Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, A232 Nelson Biological Laboratories, 604 Allison Road, Piscataway, New Jersey 08854, USA. ²Division of Biology, University of California, San Diego La Jolla, California 92093-0349, USA. Correspondence should be addressed to M.D. (driscoll@mbcl.rutgers.edu).

each of the four VGC channels²⁷ and two distantly related *nca-1* and *nca-2* channels²⁸. Quantification of cell death did not, however, detect significant effects of any VGCC mutation on either the time of onset or the extent of necrosis (**Fig. 1b**).

In complementary studies, we tested whether cultured *mec-4(d)* neurons (which differentiate and die similarly in culture as *in vivo*; **Supplementary Fig. 1** online) would be protected from necrosis by treatment with nifedipine, verapamil or diltiazem (L-type blockers that are effective on nematode channels; C.F.-J. and W.R.S., unpublished data), Ni²⁺ (a T-type channel blocker) or Cd²⁺ (a more general Ca²⁺ channel blocker that blocks all high-voltage-gated Ca²⁺ channels at 100 μ M), either alone or in combination with Ni²⁺. Although amiloride was found to be neuroprotective in the culture assay, none of the VGCCs blockers reduced cell death (**Fig. 1c**). Thus, VGCCs do not contribute a source of Ca²⁺ that is essential for necrosis activation.

We tested several alternative sources of Ca^{2+} influx by using genetic and RNA interference disruption approaches, but none of these sources was implicated in necrosis (**Supplementary Table 1** online). In considering alternative models of how *mec-4(d)* might elicit Ca^{2+} release from the ER, we recognized that the potential Ca^{2+} permeability of the **Figure 1** VGCCs do not influence mec-4(d)-induced cell death. (a) Necrotic swollen touch neurons are evident in the L1 stage of mec-4(d) nematodes. (b) Degeneration in PLM touch neurons was assayed in the mec-4(d) strain (-) and in the indicated mec-4(d) and VGCC double and triple mutants (alleles: T-type cca-1(gk30), N-P/Q-type unc-2(e55), L-type egl-19(ad1006) and unc-36(e251), novel nca-1(gk9) and nca-2(gk5)) by determining the percentage of L1 worms with one or two degenerating PLM neurons up to 5 h after hatching. Data are the mean \pm s.e.m. (n = 2-4 repetitions; sample size ≥ 192 larvae). (c) mec-4(d)-expressing touch neurons were cultured for 24 h under standard conditions in the absence (-) or presence of the indicated VGCC blockers. Numbers of touch neurons per field were scored (at $\times 40$ magnification) after cell fixation in 4% paraformaldeyde. Data are the mean \pm s.e.m. (n = 5-30 fields scored). **P < 0.01 versus untreated cells by *t*-test.

MEC-4(d) channel itself had not been addressed. We therefore tested whether the MEC-4(d) channel might directly conduct Ca^{2+} .

MEC-4(d) conducts Ca²⁺ in Xenopus oocytes

The touch-transducing MEC Na⁺ channel is thought to include the DEG/ENaC subunits MEC-4 and MEC-10, MEC-2 (a stomatin-related protein)^{10,16} and MEC-6 (homologous to paraoxonases)¹¹. Consistent with previous data^{10,11}, coexpression of MEC-4(d), MEC-10(d), MEC-2 and MEC-6 (hereafter referred to as the MEC-4(d) channel complex) in Xenopus oocytes induced a large Na⁺ current (Fig. 2a). When we exposed these oocytes to carrier ion Ca²⁺ rather than Na⁺, we detected a large inward Cl⁻ current on membrane hyperpolarization (Fig. 2b) that was not evident in non-injected oocytes (Fig. 2c,d). This current showed the same characteristics as the slow component of the Xenopus oocyte endogenous Ca2+-activated Cl- current29: namely, slow activation kinetics ($\tau = 311 \pm 37.7$ ms; n = 34), slow inactivation kinetics $(\tau = 1,451 \pm 152 \text{ ms}; n = 30)$, a reversal potential of $-53.6 \pm 2.2 (n = 37)$ and sensitivity to 200 µM 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), a specific Cl⁻ channel blocker that inhibits the endogenous Ca²⁺-activated Cl⁻ current³⁰ (data not shown). The amplitude of the MEC-4(d) Na⁺ current in a given injected oocyte strongly paralleled the amplitude of the Ca²⁺-activated Cl⁻ current (Fig. 2e,f).

Because the endogenous Ca^{2+} -activated Cl^- current in *Xenopus* oocytes is known to be activated by an intracellular increase in Ca^{2+} , we tested whether we could block activation of the MEC-4(d)-dependent current by buffering intracellular Ca^{2+} with EGTA. We found that the Ca^{2+} -activated Cl^- current was markedly suppressed by EGTA injection both before (n = 8; data not shown) and during (n = 33; **Fig. 3a,b**) electrophysiological recordings. Taken together, these observations suggest that the MEC-4(d) channel complex directly conducts Ca^{2+} into the oocyte, thereby activating an endogenous Ca^{2+} -sensitive current.

Amiloride sensitivity of MEC-4(d) Ca²⁺ currents

Our successful blocking of the Ca²⁺-activated Cl⁻ current by EGTA²⁹ (**Fig. 3a,b**) enabled us to identify a MEC-4(d)-dependent Ca²⁺ influx. We therefore tested whether the isolated current would be inhibited by amiloride; this inhibition is well documented for the MEC-4(d) channel complex reconstituted in oocytes¹⁰. Indeed, we found that application of amiloride blocked a portion of the residual current (**Fig. 3c**). (The remaining amiloride-insensitive current is probably carried by endogenous Ca²⁺-insensitive Cl⁻ channels that are present in *Xenopus* oocytes³¹.)

We found that the amiloride-sensitive Ca^{2+} current (**Fig. 3d**) had the following properties: first, it was not present in oocytes not injected with *mec* RNA (**Fig. 3e**), indicating that it depends on the MEC-4(d) channel complex; second, it reversed at -49.3 ± 0.5 mV (n = 9) in 73 mM CaCl₂, typical of a channel with low Ca²⁺ permeability; third,

Figure 2 Endogenous Ca²⁺-activated Cl⁻ currents are activated in Xenopus oocytes injected with mec-4(d) when exposed to CaCl₂ solutions. (a) Example of Na⁺ currents elicited by voltage steps from -160 to +40 mV from a holding potential of -30 mV in an oocyte injected with mec-4(d), mec-10(d), mec-2 and mec-6 and exposed to NaCl solution (n = 332). The reversal potential of the current is 0 mV. (b) The same oocyte was exposed to a solution in which NaCl was replaced with CaCl2 and the voltage protocol in a was applied (holding potential 0 mV). The reversal potential is -40 mV (n = 271). Both Na⁺- and Ca²⁺-activated Cl⁻ currents can be simultaneously detected in oocytes perfused with a solution containing 50 mM NaCl and 33 mM CaCl₂ (not shown). (c) Exposure to NaCl solution does not activate endogenous currents in a non-injected oocyte (voltage protocol as in **a**; n = 30). (**d**) The endogenous Ca²⁺-activated Cl⁻ current is not activated in non-injected oocytes on exposure to CaCl₂ solutions (voltage protocol as in **b**; n = 30). (e) Average Cl⁻ current at -160 mVrecorded from oocytes injected with mec-4(d), mec-10(d), mec-2 and mec-6 (n = 56) and from non-injected (n = 16) oocytes. Data are the mean \pm s.e.m. (f) Amplitude of the Na⁺ current carried by the MEC-4(d) channel complex plotted against amplitude of the Ca²⁺-activated Cl⁻ current for each oocyte. Data points were fitted to a linear regression (slope = 2.3).

it showed a shift in reversal potential to more negative potentials in 20 mM CaCl₂ ($\Delta V = -28$ mV, n = 6), indicating that Ca²⁺ is the permeating ion; and fourth, it inwardly rectified, as does the MEC-4(d) channel Na⁺ current (**Fig. 3e**).

We also found that adding the MEC-10(d) subunit to the channel complex altered the amiloride inhibition constant (K_i) for the Ca²⁺ current in the same way that it alters the amiloride K_i for the Na⁺ current¹⁰ (**Fig. 3f**). Similarly, returning to measurements on the endogenous Ca²⁺-activated Cl⁻ current (which is insensitive to amiloride up to a concentration of 100 μ M; ref. 30) as a readout of Ca²⁺ currents permeating MEC-4(d) channels, we recorded K_i values similar to those reported¹⁰ for the MEC-4(d)-dependent Na⁺ current ($K_i = 0.37$ and 6.7 μ M with and without MEC-10(d), respectively; **Fig. 3g**). These data support the idea that the MEC-4(d) channel complex itself directly conducts the amiloride-sensitive Ca²⁺ current that we isolated.

Notably, the voltage dependence of the amiloride block in $CaCl_2$ did not parallel that of the MEC-4(d) channel in NaCl at very negative

Figure 3 MEC-4(d) channels conduct Ca²⁺. (a) Ca²⁺-activated Cl⁻ currents were elicited in an oocyte injected with mec-4(d), mec-10(d), mec-2 and mec-6. Tail currents are due to repolarization at -30 mV. (b) The same oocyte was then injected with few nanoliters of 250 mM EGTA through the recording pipette (to a final concentration of ~5 mM) and stimulated with the same voltage protocol (from -160 to +40 mV from a holding potential of 0 mV). (c) Currents remaining after exposing the same oocyte to 10 µM amiloride. (d) Amiloride-sensitive current obtained by subtracting the current in c from that in b. (e) Average //V relationships of amiloridesensitive currents recorded from EGTA-injected oocytes expressing MEC-4(d), MEC-2 and MEC-6 (\blacklozenge ; n = 9), and from oocytes not injected with mec RNA (\diamondsuit ; n = 4). (f) Ratio of Ca²⁺ current elicited by 10 μ M amiloride to that elicited by 50 μ M amiloride in oocytes expressing the indicated subunit compositions (n = 4). Dotted line indicates a ratio of 1. (g) Amiloride dose-response curves (at -160 mV) for Ca2+-activated Cl⁻ currents in oocytes injected with mec-4(d), mec-2 and mec-6 with (+M10(d); n = 6) or without (-M10(d); n = 6) mec-10(d). K_i values were 0.37 µM for +M10(d) and 6.7 µM for -M10(d). (h) Voltage dependence of the amiloride blockade in g. Data were also recorded in NaCl solution for oocytes injected with mec-4(d), mec-10(d), mec-2 and mec-6 (+M10(d) in NaCl; n = 6). The smooth line is a fit using a Woodhull model³² ($\delta = 0.40$ for +M10(d), 0.34 for -M10(d) and 0.50 for +M10(d) in NaCI).

voltages (**Fig. 3h**). This observation suggests that amiloride begins to interfere with the permeating Ca²⁺ ion at these voltages³²; thus, amiloride and Ca²⁺ may share a common binding site. On the basis of the shift in reversal potential, we calculated a permeability ratio of Ca²⁺ over Na⁺ (PCa/PNa) of 0.22 ± 0.04 (n = 9), and 0.22 ± 0.02 for the complex lacking MEC-10(d) (n = 9; **Fig. 3e**) and we obtained the following divalent permeability series for the MEC-4(d) channel complex: PCa = PMg > PSr > PBa >> PZn.

Ca²⁺ conductance is dependent on the MEC-4(d) subunit We next determined systematically which subunits of the MEC-4(d)

channel complex are required for Ca²⁺ current. Previous work has shown

that the addition of either stomatin-like MEC-2 or paraoxonase-like MEC-6 to the MEC-4(d) subunit expressed in *Xenopus* oocytes decreases the PLi/PNa ratio, suggesting that amino acid residues in MEC-2 and MEC-6 may line the channel pore^{10,11}. We found that omission of either MEC-2 or MEC-6 still permitted the Ca²⁺-dependent Cl⁻ current to be activated, indicating that neither subunit is essential for Ca²⁺ permeability (**Fig. 4a–d**). As is true for the Na⁺ current, however, omission of either MEC-2 or MEC-6 lowered the Ca²⁺-activated Cl⁻ current amplitude. Tests for the contribution of the MEC-10(d) subunit showed that MEC-10(d) is also not essential for the influx of Ca²⁺ (**Fig. 4e,f**); however, the addition of MEC-10(d) diminished the Ca²⁺-activated Cl⁻ current and the isolated amiloride-sensitive Ca²⁺ current amplitude in a manner that paralleled its effects on the Na⁺ current (**Fig. 4g–i**).

When we tested the requirement for the MEC-4(d) subunit, we detected neither the Na⁺ current nor the Ca²⁺-induced Cl⁻ current in oocytes expressing all subunits except MEC-4(d) (n = 6), supporting the idea that the MEC-4(d) subunit is crucial for both currents (**Fig. 5c,d**). Similarly, a MEC-4(d) mutant carrying the amino acid substitution S276F, which alters a residue in the channel pore and suppresses *mec-4(d)*-induced necrosis *in vivo*^{17,33–36}, conducted neither

Figure 5 The Ca²⁺-activated CI⁻ current activated by exposure to CaCl₂ bath is activated only in oocytes expressing functional MEC-4(d) channels. (a,b) Example of current elicited in an oocvte injected with mec-4(d) S726F, mec-10(d), mec-2 and mec-6 and exposed to NaCl (a) or CaCl₂ (b) solution. Voltage protocols in a and b were the same as those in Fig. 2a and b, respectively. (c) Average Na⁺ current recorded at -100 mV from oocytes injected with subunits indicated on the x-axis (n = 20, 6 and 16). M4(d) indicates MEC-4(d) A713T. (d) Average Ca2+-activated CI- current recorded at -160 mV from oocytes injected with the subunits indicated on the x-axis and bathed in CaCl₂ (n = 10, 6 and 12). (e) Average *IV* relationships of amiloride-sensitive Ca2+ currents recorded from EGTA-injected oocytes expressing MEC-4(d) S726F, MEC-10(d), MEC-2 and MEC-6 (n = 7). (f) Average amiloride-sensitive (50 μ M) Ca²⁺ currents at -160 mV. Data are the mean \pm s.e.m. (n = 7 and 9). The dotted line is the level of current in non-injected oocytes. **P < 0.01 by t-test. (g) Fluorescent photograph of a non-injected oocyte stained with antibody to MEC-4, showing no background plasma membrane staining. (h,i) Oocytes expressing MEC-10(d), MEC-2 and MEC-6 plus either MEC-4(d) (h) or MEC-4(d) S726F (i), stained with antibody to MEC-4. A 2-s exposure time was used for all photographs.

Figure 4 The MEC-4(d) subunit is required for Ca^{2+} permeability. (a) Example of Na⁺ currents elicited by voltage steps from -160 to + 60 mV from a holding potential of -30 mV in an oocyte injected with mec-4(d), mec-10(d) and mec-2 and exposed to NaCl solution. (b) The same oocyte was exposed to a solution in which NaCl was replaced with CaCl₂. The current was activated by voltage steps from -160 to +40 mV from a holding potential of 0 mV. (c) Na⁺ currents elicited in an oocyte injected with mec-4(d), mec-10(d) and mec-6 using the voltage protocol in a. (d) The same oocyte was exposed to CaCl₂ solution using the voltage protocol in **b**. (e) Na⁺ currents elicited in an oocyte injected with mec-4(d), mec-2 and mec-6 using the voltage protocol in a. (f) The same oocyte was exposed to CaCl₂ solution using the voltage protocol in b. (g) Effect of coexpressing MEC-10(d) on the MEC-4(d) Na+ current amplitude. Shown is the average Na⁺ current amplitude at -100 mV in oocytes injected with mec-4(d), mec-2 and mec-6 with or without mec-10(d) (n = 20 for both). (h) Effect of coexpressing MEC-10(d) on the Ca²⁺-activated Cl⁻ current (n = 10 and n = 12, respectively). Currents were recorded at -160 mV. (i) Effect of coexpressing MEC-10(d) on the MECdependent Ca²⁺ current (n = 9 for both). Currents were recorded at -160 mV. *P < 0.05 and **P < 0.01 by *t*-test.

the Na⁺ nor the Ca²⁺ current (n = 16; **Fig. 5a–f**), despite its expression at the plasma membrane (**Fig. 5g–i**). We conclude that the Ca²⁺ current induced by MEC-4(d) channels does not result from nonspecific activation of endogenous *Xenopus* oocyte channels; instead, functional MEC-4(d) subunits are essential for generating this Ca²⁺ current.

The MEC-4(d) channel conducts Ca²⁺ in touch neurons

Because direct electrophysiological recording from *C. elegans* touch receptor neurons is not technically feasible and the PCa/PNa ratio is relatively small such that *in vivo* measurement of Ca^{2+} influx through MEC-4(d) is an extreme practical challenge (at best), we used imaging protocols that report Ca^{2+} influx in cultured touch neurons to address whether the MEC-4(d) channel conducts Ca^{2+} *in vivo*¹³.

We used *crt-1*-null mutations to block necrosis⁵ in cultures of touch neurons expressing MEC-4(d) (**Supplementary Fig. 1** online). We cultured cells from *crt-1(null);mec-4(+)* and *crt-1(null);mec-4(d)* mutants,

VOLUME 7 | NUMBER 12 | DECEMBER 2004 NATURE NEUROSCIENCE

Figure 6 Cultured mec-4(d)-expressing touch receptor neurons show an amiloride-sensitive Ca2+-current not present in mec-4(+) neurons (a,b) Left, crt-1(null);mec-4(+) (a) and crt-1(null);mec-4(d) (b) cultured touch neurons were imaged for about 5 min in standard extracellular saline solution and perfused first with 20 µM nifedipine (NIF) for 3 min and then with 20 µM nifedipine plus 10 µM amiloride (AMIL) for 2.5 min. The amiloride was then washed out. The ratio change is the YFP/ CFP value reported by the cameleon sensor, which reflects intracellular Ca²⁺ (refs. 13,50). The slow change in intracellular Ca²⁺ reflects the perfusion rate used in these experiments. Right, both neurons were also subjected to calibration (see Supplementary Fig. 2 online). The resting ratio in the crt-1(null);mec-4(+) neuron (a) was 21% of the maximal ratio change, corresponding to about 200 nM Ca²⁺. The resting ratio of the crt-1(null);mec-4(d) neuron (b) was 14% of the maximal ratio change. No statistically significant difference between the resting ratios of the two neurons was found (not shown). (c) Comparison of average ratio change after application of amiloride in crt-1(null);mec-4(+) and crt-1(null);mec-4(d) cultured touch neurons. The ratio change was measured as the ratio at the end of the wash minus the ratio at the end of amiloride application. Experimental points were fitted from the beginning of nifedipine application to the end of the wash by polymodial regression to determine the ratio levels. ** P < 0.01 by t-test. (d) Average percentage (fraction of 1) of the maximal ratio change, representing the resting Ca^{2+} level for mec-4(+) (n = 18) and crt-1(null);mec-4(+) (n = 8) touch neurons. Data are the mean ± s.e.m.

identified the touch neurons (which also expressed cameleon from the *mec-4* promoter and were therefore fluorescent) and compared the cameleon-reported Ca^{2+} changes when we manipulated amiloride. We included nifedipine in these experiments to control for the nonspecific effects of amiloride on voltage-gated Ca^{2+} channels and to eliminate possible secondary currents (**Fig. 6a,b**). Whereas nifedipine did not affect intracellular Ca^{2+} levels, the application of amiloride produced a marked transient decrease in intracellular Ca^{2+} in *crt-1(null);mec-4(d)* neurons that was not observed in *crt-1(null);mec-4(+)* touch neurons (**Fig. 6b,c**). These results indicate that death-blocked *mec-4(d)* neurons express an amiloride-sensitive Ca^{2+} current that is not present in *mec-4(+)* neurons.

Taken together, our data on Ca^{2+} currents carried by heterologously expressed MEC-4(d) channels and our *in vivo* cameleon studies suggest the MEC-4(d) channel may initiate necrosis by directly conducting Ca^{2+} into the touch neurons.

crt-1 mutants have normal [Ca2+];

Null alleles of calreticulin and mutant ER Ca^{2+} release channels are potent suppressors of *mec-4(d)*-induced necrosis⁵. Two alternative models could explain how a deficiency in Ca^{2+} -storing calreticulin might block neuronal death: first, without calreticulin cytoplasmic Ca^{2+} levels might remain low, such that even constitutively active MEC-4(d) channels cannot raise cytoplasmic Ca^{2+} to a toxicity threshold; and second, resting cytoplasmic Ca^{2+} levels might be maintained without calreticulin but, in the absence of significant ER Ca^{2+} stores, additional Ca^{2+} release from ER would be impaired, preventing a neurotoxic increase in Ca^{2+} . The cameleon Ca^{2+} reporter enabled us to distinguish between these two models.

We measured resting Ca^{2+} by comparing the yellow fluorescence protein (YFP) to cyan fluorescence protein (CFP) fluorescence ratio in the cells during perfusion with 2 mM CaCl₂ (a physiological saline) to the maximal ratio change (**Fig. 6a,b**). We calculated the resting Ca^{2+} level in *crt-1* mutant neurons to be about 200 nM, which was the same as in wild-type touch neurons (**Fig. 6d** and **Supplementary Fig. 2** online). We conclude that calreticulin deficiency does not markedly alter resting concentrations of intracellular Ca^{2+} . Because resting levels are normal in the calreticulin-null mutant, the suppression of death is more likely to be conferred by preventing exceptional release of Ca^{2+} from the ER.

DISCUSSION

A new view of MEC-4(d) neurotoxicity

The mechanisms by which aberrant ion channel activity elicits neuronal death are a chief focus of research on neuronal injury and disease. Here we have investigated the molecular mechanism by which a hyperactive DEG/ENaC Na⁺ channel becomes neurotoxic. Our studies have ruled out a role for VGCCs as a secondary Ca²⁺ source in death initiation and have shown that the MEC-4(d) channel itself directly conducts Ca²⁺. We have also generated data supporting the idea that a cataclysmic release of ER-derived Ca²⁺ is likely to be a central component in necrosis initiation. Our data hold implications for both the normal function of DEG/ENaCs and for the neurotoxicity associated with channel hyperactivation.

Necrosis-inducing MEC-4(d) channels are permeable to Ca²⁺

We obtained the following evidence that the heterologously expressed MEC-4(d) channel complex can conduct Ca^{2+} . First, the MEC-4(d) complex induced a large current in the presence of CaCl₂ that showed signature features of the previously characterized endogenous Ca2+activated Cl⁻ current in Xenopus oocytes³¹. Second, the amplitudes of the MEC-4(d)-dependent Na⁺ current and the induced endogenous Ca²⁺-activated Cl⁻ current were correlated in several, distinct experiments. Third, the amiloride sensitivity signatures for both the Na⁺ and Ca²⁺-activated Cl⁻ currents matched. Fourth, the recording of subtracted currents identified a MEC-4(d)-dependent Ca²⁺ current (PCa/PNa ≈ 0.2) that showed amiloride sensitivity and MEC-10 dampening effects identical to those of the MEC-4(d)-dependent Na⁺ current. Last, the nonlinear voltage dependency of amiloride block in CaCl₂ indicated interference between amiloride and the permeating Ca²⁺ ion at negative voltages, which is possible only if Ca²⁺ enters the channel³². Our data on interference between amiloride and Ca²⁺ also suggest that this ion uses part of the amiloride-binding site (perhaps G717; see Supplementary Fig. 3 online) to enter and to pass through the pore. Because a change in the extracellular CaCl₂ concentration shifts the reversal potential of this current, and because Na⁺ is absent from the extracellular bath in these experiments, these data clearly establish Ca²⁺ as the ion carried by the isolated MEC-4(d)-dependent current.

Using the cameleon Ca²⁺ sensor, we found evidence of amiloride modulation of intracellular Ca²⁺ only in touch neurons expressing *mec*-

4(d). We conclude that Ca²⁺ influx is abnormal in a *mec-4(d)* mutant and infer that the MEC-4(d) channel directly carries this current.

Ca²⁺ permeability and normal DEG/ENaC function in vivo

Does the wild-type MEC-4 channel complex conduct Ca²⁺ to mediate its normal touch-transducing function? We did not detect Na⁺ currents in oocytes expressing MEC-4(+) and MEC-2 either with or without MEC-6 despite several attempts at measurement. These findings confirm that the MEC-4(+) channel complex assembled in oocytes is inactive¹⁰, but leave us unable to evaluate whether MEC-4(+) channels are permeable to Ca^{2+} . Notably, however, transient changes in intracellular Ca²⁺ in response to gentle touch stimulation of touch receptors in vivo depend at least partially on the function of the voltage-gated Ca²⁺ L-type channel subunit EGL-19 (ref. 13). We previously attributed the diminished (rather than eliminated) transients seen in the egl-19 mutant background to the fact that the egl-19 alleles studied were partial-loss-of-function^{13,37}. Our identification of an amiloride-sensitive Ca^{2+} current in mec-4(d) touch neurons, however, raises the possibility that some of the brief Ca²⁺ influx induced by gentle touch may be contributed directly by the MEC-4(+)channel. Ca²⁺ permeability of MEC-4(+) channels and its role in gentle touch sensation could be determined in future experiments by cameleon measurements of in situ exposed touch neurons, in which extracellular Ca²⁺, nifedipine and EGL-19 function could be manipulated to determine their impact on Ca²⁺ transients. Alternatively, a mutant MEC-4(d) that uncouples Na⁺ and Ca²⁺ permeability might be identified and tested for its impact on normal touch sensation.

Is Ca²⁺ permeability a common feature of DEG/ENaC family members? The only other C. elegans degenerin channel (out of 28 encoded by the C. elegans genome) that has been electrophysiologically characterized is the UNC-105 muscle channel, which seems to be Ca²⁺ impermeable³⁸. Mammalian αENaC subunits have been reported to be Ca²⁺ impermeable, although Ca²⁺ permeability can be conferred by substituting an aspartic acid or cysteine residue for a highly conserved serine residue (S589) situated in the pore-lining domain³⁵. Data on the Ca²⁺ permeability of neuronally expressed ASIC channels are limited and sometimes contradictory³⁹⁻⁴⁴. Notably, however, studies on ASIC1a channels, which are predominately expressed in the central nervous system, are localized to synapses and have been implicated in synaptic plasticity, have been shown to conduct Ca²⁺ (refs. 21,22). Given the profound importance of intracellular Ca²⁺ in short- and long-term regulation of neuronal activity, we speculate that DEG/ENaC Ca2+ conductance might have more crucial physiological roles in neuronal function than was previously suspected.

A potential role of Ca²⁺ influx in necrosis initiation

Our data suggest that a previously unexpected influx of Ca^{2+} via the MEC-4(d) channel contributes to necrosis activation. Even though the Ca^{2+} currents are relatively small and the PCa/PNa ratio is only about 0.2, this Ca^{2+} permeability is likely to be significant for an ion channel that remains constitutively open. In support of this possibility, the electrophysiological characterization of mutant MEC-4(d) subunits encoding a substitution at a second site corresponding to those isolated as *in vivo* intragenic revertants of the *mec-4(d)* necrosis-inducing phenotype indicated that these channels were either inactive (MEC-4(d) S726F) or showed a markedly reduced inward current (MEC-4(d) G717E; see **Supplementary Fig. 3** online).

Notably, none of the six distinct mutant MEC-4(d) channels that we have electrophysiologically characterized so far (D714N, G717E, S726F, S726C, S726D and A745T, all within or near the channel pore) uncouples Na⁺ from Ca²⁺ conductance. Thus, we cannot specifically distinguish whether Na⁺ or Ca²⁺ influx or both are required for initiating death. Nonetheless, given the well-known role of Ca^{2+} in regulating neuronal viability, the simplest model is that an excessive Ca^{2+} influx has a central role in signaling Ca^{2+} release from the ER.

A dynamic role for Ca²⁺ release in neuronal necrosis

In vivo analysis of MEC-4(d)-induced necrosis has shown that neurotoxicity depends on ER Ca²⁺ stores primarily held by Ca²⁺-binding protein calreticulin⁵. Our *in vivo* measurements of resting Ca²⁺ levels in neurons lacking calreticulin showed unaffected baseline levels of Ca²⁺ and ruled out the possibility that *crt-1* neurons, in which death is strongly suppressed, experience a general homeostatic lowering of intracellular Ca²⁺. The important implication of this finding is that the requirement for calreticulin ER Ca²⁺ storage and release proteins in necrosis most probably reflects their participation in a dynamic release event that is elicited in response to an inappropriate influx of ions across the plasma membrane. Notably, in mouse calreticulin knock-out fibroblasts, resting cytoplasmic Ca²⁺ is maintained but the ability to release ER Ca²⁺ from stores is markedly diminished⁴⁵, supporting the idea that similar cellular effects of calreticulin deficiency occur in nematode and mammalian neurons.

We thus propose the following model for MEC-4(d)-induced neurotoxicity. The MEC-4(d) mutant channel conducts excess Na⁺ and Ca²⁺ into the touch neuron, thereby provoking Ca²⁺ release from the ER. The MEC-4(d)-imported influx of Ca²⁺ could directly activate the ER Ca²⁺ release channels and/or could activate G-protein-coupled receptors and/or Ca²⁺-dependent phospholipases, thereby increasing IP3, which in turn would activate the IP3 receptor. The outcome would be a neurotoxic increase in cytoplasmic Ca²⁺ derived from ER stores, which would activate calpain death proteases and other downstream destructive processes. Although this detailed molecular mechanism has been worked out in nematodes, we note that it shares several features with mammalian necrosis models and is likely to apply to the potential neurotoxicity of mammalian ASICs²² or other plasma membrane Ca²⁺ channels that are activated inappropriately or excessively.

Ca²⁺ permeability of DEG/ENaCs in pathological conditions

In pathological conditions in which extracellular Ca^{2+} or acidosis are increased, such as seizures, cerebral ischemia and physical injury, the Ca^{2+} permeability of DEG/ENaC channels can become cytotoxic. Notably, studies have shown that native Ca^{2+} conducting ASIC1a channels contribute to the rise in intracellular Ca^{2+} that occurs during acidosis and that they contribute significantly to ischemic injury^{21,22}. Thus, the toxicity of excessively activated neuronally expressed DEG/ENaCs is conserved from nematodes to humans. Amiloride, a common blocker that is used in the clinic for other purposes, might have value as a pharmaceutical approach to reduce neuronal damage from ischemic insults.

It should be also noted that, although the DEG/ENaC family of ion channels has not been specifically implicated in human neurodegenerative conditions, mutant subunits that are hyperactivated or inappropriately regulated are clear candidates for potential roles in neurodegenerative conditions. Similarly, allelic variation in this channel family may underlie susceptibility to stroke damage and neuronal survival. Given the conserved aspects of degenerin and ASIC function, continued analysis of genetic and physiological components in *C. elegans* may provide insight into neuronal injury mechanisms relevant to the design of intervention strategies in humans.

METHODS

C. elegans strains and growth. Nematodes were grown according to standard protocols⁴⁶, except that enriched peptone plates seeded with *Escherichia coli*

strain NA22 were used for growth for egg preparations. Cameleon experiments were done with touch neurons cultured from crt-1(bz29) and crt-1(bz29);mec-4(u231) eggs⁵ expressing yellow cameleon version 2.12 under the control of the mec-4 promoter¹³.

Oocyte expression and electrophysiology. The *mec-2*, *mec-4(d)* and *mec-10(d)* expression clones have been described¹⁰ and were prepared in bacterial strain SMC4 (ref. 10). We cloned *mec-6* into pGEM. Mutations at second sites introduced by PCR were confirmed by sequencing. Capped RNAs were synthesized using a T7 mMESSAGE mMACHINE kit (Ambion), purified on RNAeasy columns (Qiagen), and checked for size, integrity and concentration. Stage V–VI oocytes were manually defolliculated after 2 h of collagenase treatment (2 mg/ml in Ca²⁺-free OR2 solution⁴⁷) of *Xenopus laevis* ovaries (NASCO). Oocytes were injected with 52 nl of complementary RNA (cRNA) mix to a final amount of 5 ng per oocyte of each cRNA except for *mec-6*, which was injected at 1 ng per oocyte. We incubated oocytes in OR2 at 20 °C for at least 4 d before making recordings.

Currents were measured using a GeneClamp 500B two-electrode voltage clamp amplifier (Axon Instruments) at 20 °C. Electrodes (0.3–1 M Ω) were filled with 3 M KCl or 3 M KCl plus 250 mM EGTA, and oocytes were perfused with a NaCl solution containing 100 mM NaCl, 2 mM KCl, 1 mM CaCl₂, 2 mM MgCl₂ and 10 mM HEPES (pH 7.2) or a CaCl₂ solution containing 73 mM CaCl₂, 2 mM KCl and 10 mM HEPES (pH 7.2). For experiments in which the extracellular Ca²⁺ was lowered to 20 mM, the solution contained 20 mM CaCl₂, 2 mM KCl, 159 mM NMDG chloride and 10 mM HEPES (pH 7.2). Divalent cation permeability experiments used salines containing 73 mM XCl₂, 2 mM KCl and 10 mM HEPES (pH 7.2), where X was Mg²⁺, Sr²⁺, Ba²⁺ or Zn²⁺. We used the pCLAMP suite of programs (Axon Instruments) for data acquisition and analysis. Currents were filtered at 200 Hz and sampled at 1 kHz.

Immunocytochemistry. Paraformaldehyde-fixed oocyte slices were stained with antibody to MEC-4 (ref. 9; diluted 1:50 in 1% bovine serum albumin in PBS plus 0.1% Tween 20) as described⁴⁷. The secondary antibody was Cy2-conjugated goat anti-rabbit (diluted 1:2,000; Jackson ImmunoResearch). After staining, slices were mounted with Vectorex medium (Vector) and photographed with an Axiplan 2 microscope (Zeiss) equipped with a digital camera.

C. elegans primary cultures. We prepared *C. elegans* primary cultures from eggs as described⁴⁸. VGCC blockers were added to the culture media immediately after dissociation.

Cameleon-based determination of intracellular Ca²⁺. Two-day-old cells were placed in a recording chamber (Warner Instruments) and perfused with an extracellular saline solution (145 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 10 mM HEPES and 10 mM D-Glucose; pH 7.2 and 340 mOsm) for at least 5 min before being superfused with the same solution containing 20 μ M nifedipine with or without 10 μ M amiloride. We determined the minimal and maximal ratios as described^{49,50}. The baseline Ca²⁺ concentration was determined by averaging the ratio level during the 5-min perfusion with standard saline and then calculating the percentage of the maximal ratio change between 0 and 10 mM Ca²⁺ that the ratio represented.

Note: Supplementary information is available on the Nature Neuroscience website.

ACKNOWLEDGMENTS

We thank W.-H. Lee and M. Lizzio for help with molecular biology; J. Pintar and M.-S. Hsu for the use of the vibrotome for cutting oocyte sections; M. Chalfie for the *mec* clones; and A. Galli, I. Mano and G. Patterson for critically reading the manuscript. This work was supported by grants from the National Institutes of Health (NS034435 and NS37955 to M.D., NS049511 to L.B., NSF00139 Minority Postdoctoral Fellowship to D.C.R. and DA016445 to W.R.S.), from the New Jersey Commission on Spinal Cord Research, and from Psykiatrisk Forskningsfond and Novo Nordisk (to C.F.-J.) and from Fulbright and Louis Bevier Fellowships (to B.G.).

COMPETING INTERESTS STATEMENT

The authors declare that they have no competing financial interests.

Received 2 July; accepted 12 October 2004

Published online at http://www.nature.com/natureneuroscience/

- Demaurex, N. & Distelhorst, C. Apoptosis—the calcium connection. Science 300, 65–67 (2003).
- Leist, M. & Nicotera, P. Apoptosis, excitotoxicity, and neuropathology. *Exp. Cell Res.* 239, 183–201 (1998).
- Verkhratsky, A. & Toescu, E.C. Endoplasmic reticulum Ca²⁺ homeostasis and neuronal death. J. Cell. Mol. Med. 7, 351–361 (2003).
- Mattson, M.P. et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000).
- Xu, K., Tavernarakis, N. & Driscoll, M. Necrotic cell death in *C. elegans* requires the function of calreticulin and regulators of Ca²⁺ release from the endoplasmic reticulum. *Neuron* **31**, 957–971 (2001).
- Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).
- Heintz, N. & Zoghbi, H.Y. Insights from mouse models into the molecular basis of neurodegeneration. Annu. Rev. Physiol. 62, 779–802 (2000).
- Driscoll, M. & Gerstbrein, B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat. Rev. Gen. 4, 181–194 (2003).
- Lai, C.C., Hong, K., Kinnell, M., Chalfie, M. & Driscoll, M. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in *Caenorhabditis elegans. J. Cell Biol.* **133**, 1071–1081 (1996).
- Goodman, M.B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002).
- Chelur, D.S. *et al.* The mechanosensory protein MEC-6 is a subunit of the *C. elegans* touch-cell degenerin channel. *Nature* 420, 669–673 (2002).
- Bianchi, L. & Driscoll, M. The molecular basis of touch sensation as modeled in Caenorhabditis elegans. in Transduction Channels in Sensory Cells (eds Frings, S. & Bradely, J.) 1–29 (Wiley-VCH, Weinheim, Germany, 2004).
- Suzuki, H. *et al. In vivo* imaging of *C. elegans* mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. *Neuron* 39, 1005–1017 (2003).
- Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I. & Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in *Caenorhabditis elegans. J. Biol. Chem.* 271, 10433– 10436 (1996).
- Adams, C.M., Snyder, P.M., Price, M.P. & Welsh, M.J. Protons activate brain Na⁺ channel 1 by inducing a conformational change that exposes a residue associated with neurodegeneration. J. Biol. Chem. 273, 30204–30207 (1998).
- Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in *Caenorhabditis elegans. Nature* 345, 410–416 (1990).
- Hong, K. & Driscoll, M. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in *C. elegans. Nature* 367, 470–473 (1994).
- Price, M.P. *et al.* The mammalian sodium channel BNC1 is required for normal touch sensation. *Nature* **407**, 1007–1011 (2000).
- Wemmie, J.A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning and memory. Neuron 34, 463–477 (2002).
- Wemmie, J.A. et al. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 23, 5496–5502 (2003).
- Yermolaieva, O., Leonard, A.S., Schnizler, M.K., Abboud, F.M. & Welsh, M.J. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. *Proc. Natl. Acad. Sci. USA* 101, 6752–6757 (2004).
- Xiong, Z.G. et al. Neuroprotection in ischemia: blocking calcium-permeable acidsensing ion channels. Cell 118, 687–698 (2004).
- Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in *C. elegans. Nature* **419**, 939–944 (2002).
- Metzstein, M.M., Stanfield, G.M. & Horvitz, H.R. Genetics of programmed cell death in *C. elegans*: past, present and future. *Trends Genet.* 14, 410–416 (1998).
- Berridge, M.J. Inositol trisphosphate and calcium signalling. *Nature* 361, 315–325 (1993).
- Verkhratsky, A. & Shmigol, A. Calcium-induced calcium release in neurones. *Cell Calcium* 19, 1–14 (1996).
- Bargmann, C.I. Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033 (1998).
- Jeziorski, M.C., Greenberg, R.M. & Anderson, P.A. The molecular biology of invertebrate voltage-gated Ca²⁺ channels. *J. Exp. Biol.* **203**, 841–856 (2000).
- Kuruma, A. & Hartzell, H.C. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am. J. Physiol. 276, C161–C175 (1999).
- Amasheh, S. & Weber, W. Further characteristics of the Ca²⁺-inactivated CI⁻ channel in *Xenopus laevis* oocytes. *J. Membr. Biol.* **172**, 169–179 (1999).
- Weber, W. Ion currents of Xenopus laevis oocytes: state of the art. Biochim. Biophys. Acta 1421, 213–233 (1999).
- Woodhull, A.M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).
- Sheng, S., Li, J., McNulty, K.A., Avery, D. & Kleyman, T.R. Characterization of the selectivity filter of the epithelial sodium channel. *J. Biol. Chem.* 275, 8572–8581 (2000).
- Sheng, S., McNulty, K.A., Harvey, J.M. & Kleyman, T.R. Second transmembrane domains of ENaC subunits contribute to ion permeation and selectivity. *J. Biol. Chem.* 276, 44091–44098 (2001).
- 35. Kellenberger, S., Hoffmann-Pochon, N., Gautschi, I., Schneeberger, E. & Schild, L. On

the molecular basis of ion permeation in the epithelial Na+ channel. J. Gen. Physiol. 114, 13-30 (1999).

36. Hong, K., Mano, I. & Driscoll, M. In vivo structure-function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J. Neurosci. 20, 2575-2588 (2000).

- 37. Lee, R.Y., Lobel, L., Hengartner, M., Horvitz, H.R. & Avery, L. Mutations in the $\alpha 1$ subunit of an L-type voltage-activated Ca²⁺ channel cause myotonia in *Caenorhabditis* elegans. EMBO J. 16, 6066–6076 (1997).
- 38. Garcia-Anoveros, J., Garcia, J.A., Liu, J.D. & Corey, D.P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. *Neuron* 20, 1231–1241 (1998).
 Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. *Nature* 386, 173–177 (1997).
- 40. Chu, X.P. et al. Proton-gated channels in PC12 cells. J. Neurophysiol. 87, 2555-2561 (2002).
- 41. Gunthorpe, M.J., Smith, G.D., Davis, J.B. & Randall, A.D. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflugers Arch. 442, 668-674 (2001).
- 42. Sutherland, S.P., Benson, C.J., Adelman, J.P. & McCleskey, E.W. Acid-sensing ion

channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl. Acad. Sci. USA 98, 711-716 (2001).

- 43. Zhang, P. & Canessa, C.M. Single channel properties of rat acid-sensitive ion channel-1a, -2a, and -3 expressed in Xenopus oocytes. J. Gen. Physiol. 120, 553-566 (2002).
- 44. Bassler, E.L., Ngo-Anh, T.J., Geisler, H.S., Ruppersberg, J.P. & Grunder, S. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem. **276**, 33782–33787 (2001).
- 45. Mesaeli, N. et al. Calreticulin is essential for cardiac development. J. Cell Biol. 144, 857-868 (1999).
- 46. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974). 47. Bianchi, L. et al. Mechanisms of IKs suppression in LQT1 mutants. Am. J. Physiol.
- 279, H3003-H3011 (2000). 48. Christensen, M. et al. A primary culture system for functional analysis of C. elegans
- neurons and muscle cells. Neuron 33, 503-514 (2002). 49. Thomas, D. et al. A comparison of fluorescent Ca2+ indicator properties and their use in
- measuring elementary and global Ca2+ signals. Cell Calcium 28, 213-223 (2000). 50. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583-594 (2000).

VOLUME 7 | NUMBER 12 | DECEMBER 2004 NATURE NEUROSCIENCE