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INTRODUCTION 
 
Overview 
 
This report summarizes the results of the work performed under the project title 

“Use of Neural Network/Dynamic Algorithms to Predict Bus Travel Times under 

Congested Conditions”. The objective of the project is to develop a 

Neural/Dynamic (N/D) model to predict bus travel times at all major stops (time 

points). The APC data collected from Bus Route 62 of NJ Transit was applied for 

developing the proposed bus travel time prediction model. The travel times 

between consecutive time points were predicted considering stochastic traffic 

congestion, weather condition and ridership distribution. The predicted travel time 

and actual bus travel time collected from APCs were then combined and fed into 

the developed Kalman filtering algorithm, which enabled the predicted travel 

times to be adjusted dynamically based on real time information (e.g., most 

recent bus travel times, ridership, weather, and time of the day, etc.). 

 

 
Background 
 
The Advanced Public Transportation Systems (APTS) program, one of the major 

components in Intelligent Transportation Systems (ITS), was initiated by the 

Federal Transit Administration (FTA) to encourage the applications of emerging 

technologies in computers, communication, and navigation for promoting the 

efficiency, effectiveness and safety of public transportation system. The APTS 

technologies, such as Global Positioning Systems (GPS), Automatic Vehicle 

Location Systems (AVLS) and Automatic Passenger Counter Systems (APCS), 

have been implemented in various public transit systems to obtain real-time 

information, including vehicle locations, speeds and occupancies. Such 

information can enhance the capability of transit passenger information systems 

assist proactive transit planning and management, and improve overall service 

quality.  
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With the application of AVLS real-time information, such as vehicle locations and 

speeds, can be estimated dynamically. However, only a reliable information 

system embedded in a realistic prediction model can attract passengers to 

access transit systems and use the predicted information (e.g., travel time) for 

decisions of trip-making. Such information can be disseminated through Traveler 

Information System (TIS) accessed by travelers at homes, work places, terminal 

centers, wayside stops or on board through a variety of media (e.g., 

TRAVELLINK in Minneapolis, MN; PA.CIS in New York City, NY; AZTech in 

Phoenix, Arizona, and SMARTBUS in Atlanta, GA).  

 
NJ Transit faces increasing demand and the challenge to know ahead of time, 

whether or not their buses are running on schedule. It is necessary to know when 

buses will arrive at the designated onboard and destination stops. Bus travel 

times are prone to a high degree of variability mainly due to traffic congestion, 

ridership distribution, and weather condition. There is a need to develop a model 

for predicting bus arrival times and improve the quality of information provided to 

customers. Providing timely up-to-date transit information may reduce the 

negative impact of schedule/headway irregularities on transit service. There is 

also a need to examine the variability of bus travel times to prepare more 

accurate schedules and assist transit agencies to restore service disturbances. 

 
The bus travel time deviations between stops are usually caused by several 

stochastic factors. Transit vehicle (e.g., buses) operations are frequently 

disturbed by right of way competence with other vehicles, congestion on the 

service route at different times of the day, intersection delays, variation in 

demands, and dwell times at stops. The resulting impact of these factors on the 

transit system comprises of bunching between pairs of operating vehicles, 

increasing passenger waiting times (and hence risk of passenger safety), 

deterioration of schedule/ headway adherence, uneven transition of inter-modal 

transfers, increasing cost of operation and traffic delays. All these factors may 

reduce the level of service and discourage riders to use the transit system. One 

way to mitigate the impact is to provide accurate information of vehicle 
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arrival/departure times and expected delays at major stops. This will then enable 

users either to present at the stop before the bus arrives or (if at all they are 

already arrived at the stop) to effectively utilize their wait times (e.g., shopping, 

making phone calls etc.).   

 
The deployment of travel time prediction models in Advanced Traveler 

Information Systems (ATIS) can benefit both transit providers and users. With 

accurate vehicle arrival information, transit users may efficiently schedule their 

departure time from work places/homes and/ or make successful transfers by 

reducing waiting times at stops. Transit providers can manage and operate their 

systems in a more flexible manner such as real-time dispatching and scheduling. 

Therefore, proper control action (e.g., increase or decrease operating speed, 

dwell longer times at some stops, etc.) can be determined, to maintain a 

desirable level of service by dynamically restoring the disruptions in scheduled 

headway. 

 

The automatic passenger counter (APC) has been applied in NJ Transit buses. 

The primary benefit of APC is the increase in both quantity and quality of 

information collected. APC can link the time and location of a door open/close 

event. This technology has provided a good platform to obtain reliable 

information for predicting bus travel times between pairs of stops as well as 

arrival times at stops. 

 

Objective 
 
This research applied time and location dependent data automatically collected 

by APC units installed in buses, including passenger counts and average travel 

time between major bus stops. The objective of this study is to develop a 

dynamic model (e.g., the integration of artificial neural networks and Kalman 

filtering algorithm) that can predict bus arrival information with the use of real-

time and historical data. The following tasks have been conducted while 

achieving the objective: 
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• Conduct extensive literature review in travel time prediction models. 

• Identify geometric factors that affect bus travel times. 

• Collect APC data to examine the bus travel times. 

• Develop dynamic models that can adequately predict bus arrival times at 

major bus stops, and 

• Evaluate the accuracy of the developed predictive models. 

 
 
Scope of Work and Organization 
 
In order to achieve the objective, extensive work has been performed and divided 

into three phases: literature review, model development and model evaluation. In 

Phase I, a comprehensive review of the current APTS applications was 

conducted, while the potential prediction models that can be used for predicting 

transit vehicle arrival/travel times were thoroughly investigated and discussed in 

chapter 2. In Phase II, several tasks were conducted including preliminary 

research of the studied patterns, collection of necessary data for developing 

neural/dynamic (N/D) model. Chapter 3 discussed all the collected data including 

APC data and GIS data provided by NJ Transit, weather data from National 

Climatic Data Center (at Asheville in North Carolina and Boulder in Colorado) 

and geometric data from the studied route. Chapter 4 was to identify the studied 

patterns and select the appropriate prediction model software. Chapter 5 

illustrated the procedure of data processing from data screening, calculation to 

interpolation. Chapter 6 demonstrated the (N/D) prediction model development 

and its refine procedures. In Phase III, the evaluation and analysis of the 

developed prediction model was conducted. Chapter 7 provided statistical index 

to evaluate the developed prediction models and analyzed the prediction results. 

Chapter 8 concluded the research endeavor and proposed future research 

direction.  
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LITERATURE REVIEW 
 
Introduction 
 
The application of automotive vehicle location (AVL) and automatic passenger 

counter (APC) systems in transit is becoming more widespread in the United 

States. The current practices, benefits, and technology associated with the real 

time locations of buses, as well as, other associated technological components of 

the advanced public transportation systems (APTS) are examined in this report.  

Review of literature related to this issue has shown an increase in the usage of 

the systems, particularly AVL and APC, in transit agencies across the United 

States.  This emergence has also led to an increase in the technology and the 

quality of technology required for accurate information.  Another major step 

forward for the AVL systems is the increased and more accurate use of GPS 

data to determine bus locations.  The majority of the literature review listed 

several perceived benefits as common reasons for installing this type of 

technology on their buses.  The most common benefits of AVL systems include 

increased passenger safety, passenger satisfaction due to improved efficiency, 

and improved efficiency for the transit-controlled systems.  Difficulties or 

problems experienced by those agencies that have implemented the system will 

be examined. Similarly, a number of technological problems involving hardware, 

software, and implementation are also discussed. 

 
A number of studies and publications related to specific transit agencies are also 

incorporated into this review, in order to determine the effectiveness of the 

systems from a transportation standpoint.  The primary focus will be on particular 

agencies in order to determine how they are using and benefiting from the 

implementation of different types of systems.  Those agencies found to be using 

AVL and/or APC systems range from small to large with varying degrees of use.  

The cost of these systems also varies dependent upon the number of buses as 

well as the different components utilized by each.  
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State of the Practice APTS 
 
Use and Options 
 
It was reported by the Federal Transit Administration (FTA) that in 1999 there 

were 61 agencies utilizing AVL systems. (1) At this time there were also 93 more 

agencies in the planning or implementation phase.  The use of AVL is being 

integrated with other systems to help improve the transit system for the 

passengers. Some of these systems include: automatic vehicle 

monitoring/control, emergency location, data collection, customer information, 

fare collection, and traffic signal priority.  Even though the technology is fairly 

new it is already beginning to change.  Earlier systems utilized the signpost 

method for location; however, most systems today, nearly 70 percent, are GPS 

(Global Positioning System) operated.  The Federal Highway Administration 

(FHWA) reported that GPS is the most widely used method and that the 

accuracy has increased significantly (2) – it has improved from 100 meters to 

between 10 to 20 meters in 2000.  This increase is explained by the removal of 

intentional degradation to the signal by the military. The improvement has led to 

most agencies using GPS, however, for the sake of completeness the four types 

that can be used are discussed below emphasizing the primary advantages and 

disadvantages of each: (1) 

 
• Signpost and Odometer (active and passive) – The vehicle reads a unique 

signal from signposts in order to relay their position to dispatch.  The 

primary advantage is that the technology and use has been proven and 

well established.  The primary disadvantages are: (1) the need for 

signpost, and (2) the system does not work if the bus is off route.   

 

• Global Positioning System – Special receivers on the buses read 

information from orbiting satellites.  The main advantages revolve around 

the accuracy and the fact that no wayside materials need to be purchased.  

The only expressed disadvantage is that large buildings or tunnels can 
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block the signals. However, the use of the differential GPS would 

somewhat correct this problem.   

 
• Ground Based Radio – Receivers read information from a network of radio 

towers in order to triangulate their position.  Again the signals can be 

obtained from anywhere without the need to purchase any wayside 

equipment. 

 

• Dead Reckoning –The use of the bus odometer and a compass are used 

to determine the location.  This system is often used in conjunction with 

one of the other methods.  Consequently, this system is rather 

inexpensive, but is less precise. 

 

 
Benefits  
 
A number of benefits, along with some problems are examined in order to 

evaluate the effectiveness of AVL systems.  The most common objectives of AVL 

installation were to improve customer service, through improved safety, reliability, 

and use of bus status information.  A study conducted by the FTA (1) surveyed 

numerous sites where ATPS was deployed and the usefulness of AVL systems 

that are being used was evaluated.  The sites surveyed were: Milwaukee County 

Transit System (Milwaukee, Wisconsin); Ann Arbor Transportation Authority (Ann 

Arbor, Michigan); New Jersey Transit (Essex County, New Jersey), King County 

Department of Transportation, Metro Transit Division (Seattle, Washington); Tri-

County Metropolitan Transportation District (Portland, Oregon); the Regional 

Transportation District (Denver, Colorado); and the Montgomery County 

Transportation Authority (Rockville, Maryland).  The transit agencies surveyed 

stated the following as benefits of AVL and other system components: 

 

• Improved schedule adherence and transfer coordination. 

• Improved ability of dispatchers to control bus operations. 
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• Increased accuracy in schedule adherence monitoring and reporting. 

• Assisted operations during snowstorms and detours caused by accidents 

or roadway closings. 

• Effectively tracked off-route buses. 

• Reduced manual data entry. 

• Monitored driver performance. 

• Reduced voice radio traffic. 

• Established priority of operator calls. 

• Improved communications between supervisors, dispatchers, and 

operators. 

• Provided capability to inform passengers of predicted bus arrival times. 

• Helped meet Americans with Disability Act requirements by using AVL 

data to provide stop annunciation. 

• Used playback function in investigating customer complaints. 

• Used AVL data to substantiate agency’s liability position. 

• Provided more complete and more accurate data for scheduling and 

planning. 

• Aided in effective bus stop placement. 

• Used AVL-recorded events to solve fare evasion and security problems. 

• Provided more accurate location information for faster response. 

• Foiled several criminal acts on buses with quick response. 

 

In order to apply the benefits to other agencies the following characteristics of the 

survey sites should also be noted: 

• AVL use ranged from 82 buses (Ann Arbor) to 1343 buses (King County). 

• All utilized computer aided dispatching. 

• All but King County used GPS or DGPS systems, King County used 

signpost & odometer. 

• All used mobile data terminals. 
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• APC were used or planned to be used on all but on Rockville, Maryland 

and Denver, Colorado systems.  

 

A number of particular agencies and programs also have detailed many benefits 

from AVL and APTS use.  The state of fleet control in the United States and other 

countries was evaluated by the US DOT Operations Timesaver project (3) in 

which a number of benefits were revealed from collected data.  The following 

were cited as examples of APTS benefits: fleet reduction (2-5 percent) due to 

increased efficiency, improved travel time (Kansas City reduced scheduled travel 

time by 10 percent), schedule adherence (Baltimore reported a 23 percent 

improvement with AVL equipped buses), and improved safety due to less time 

spent at bus stops.  AVL also provided data for analysis that reduces the need 

for staff to maintain schedules, estimating savings of $40,000 per travel time 

survey to $1.5 million annually.  Particularly, the schedule adherence 

improvement was cited as: (4) 

 

• Milwaukee County Transit System, Milwaukee, Wisconsin, reported an 

increase of 4.4 percent, from 90 to 94 percent. 

• Kansas City Area Transit Authority, Kansas City, Missouri, reported a 12.5 

percent increase, from 80 to 90 percent. 

• Regional Transportation District, Denver, Colorado, reported an increase 

of between 12 and 21 percent on various routes. (4) 

 

Aside from these, a number of smaller transit agencies also reported the effects 

of AVL systems.  A number of small and medium sized transit agencies were 

surveyed for the Transportation Research Board to determine the benefits that 

AVL systems and their components offered. (5) Most of the agencies surveyed 

gained funding from “State and local Governments along with FTA.”  The cost for 

these smaller systems ranged from 50 to 750 thousand dollars.  The number of 

buses served ranged from 14 to 32.  The analysis led to the conclusion that the 

benefit of AVL systems is directly related to the annual ridership of the system.  
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In addition, most cost differentials are likely to occur with systems that have 

“problems maintaining schedules and service reliability.”  It is recommended that 

AVL systems should be implemented to decrease passenger-waiting times to 

attain the maximum benefit of the system.  

 
 
Problems 
 

The primary problems or difficulties experienced by most agencies dealt with 

integration or implementation problems of the hardware and software. Another 

problem, reported by the TCRP, from a survey of agencies found that funding 

was the primary problem with procuring the system (6). Additional problems 

include the need for more specialized staff to handle the updating, maintaining, 

and controlling of the system.  The process of implementing an AVL system 

usually took more than a few years from design to full use.  Most agencies had 

not established a method to quantify the efficiency of their systems.  Due to this 

and the lack of comparable price comparisons it is hard to define the benefits of 

the system quantitatively.   

 
A number of issues needed to be addressed before APTS, particularly AVL, were 

a beneficial investment.  The primary issues revolve around integration of the 

system, and are outlined below: (3)  

 

• Institutional barriers – labor contracts, governmental rules, and political 

directives can create barriers that prohibit cost effect introduction of such 

systems. 

• Infrastructure problems – Transit agencies are sometimes lacking 

sophisticated technology, which makes integration of new systems 

difficult.  Installation of APTS is labor intensive, but is getting cheaper.   

• Architecture/protocol – There is a technology compatibility problem and 

integration with other transit technologies has been difficult. 
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• Integration issues – APTS devices alone are of limited value to 

management decision-making, but when used in combination with broader 

information systems they are very powerful. 

 

Most of the issues mentioned are beginning to diminish.  As more widespread 

use of the systems evolve, the process of implementation is becoming easier. 

Many of the agencies that have or are expecting AVL systems are purchasing 

new buses with wiring for the system included. 

 

 
Effects on the Workforce 
 
While the reported benefits of AVL systems are great, there is a certain degree of 

training that is required for proper control of the system.  Most research has 

shown that after proper training, most workers find the systems beneficial.  The 

workers are able to complete their work more efficiently and accurately.   

 

These human factors are very important and were the focus of a United States 

Department of Transportation Report in 1999. (7) The effects of real time vehicle 

location systems on the employees of the transit agency were examined.  The 

study was based on the new Computer Aided Dispatch/Automatic Vehicle 

Locator (CAD/AVL) system at Denver’s Regional Transportation District (RTD). 

The data collected in 1996 and 1997 were compared with that collected before 

installation of the system. The collected data include frequency of 

communications, number of personnel per unit of service, procedures and 

communication, the attitudes of the dispatchers, street supervisors and bus 

operators. The employees had to learn how to use and integrate the new 

technology into their jobs.  The analysis found that this new knowledge provided 

additional information to the personnel, but did not change their responsibilities.  

The report also found that dispatchers had to make fewer requests for 

information and could make their decisions more accurately and easily.  

Operators had more “accountability” in controlling the buses and their schedules, 
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but the dispatchers’ workload increased due to an increased number of received 

calls.  It was also stated that street supervisors have more duties than before; 

however, their need to observe traffic conditions in the field became non-existent.  

Overall, almost everyone found that the newly provided real-time information led 

him or her to more accurate information and decisions.   

 

A study that looked at the same transit system in Denver, Colorado offers 

information about the impacts of an AVL system on the transit employees. (8)   

The report analyzes the effectiveness of an AVL system installed in Denver, 

Colorado by the RTD.  The system was installed in 1993; however, it was not 

used until 1996 due to a number of difficulties. After most of the installation was 

complete and the system was being used, a number of employees were 

surveyed to determine their feelings about the system.  Operators, dispatchers, 

and field supervisors were all surveyed.  Most of those surveyed found the 

system to be easy to use, helpful in emergencies, and accurate and reliable.  

 
 
Applications 
 
In order to thoroughly examine the effect APTS systems, specific examples need 

to be examined.  The following sections detail the use of specific systems, 

programs, or technology to explore the scope and benefit of AVL and/or APC 

technologies. 

 

Nextbus 
 
The Nextbus System provides services to a number of different agencies.  

Nextbus Information Systems provides arrival information that is updated at 

regular intervals. (9) GPS satellites are used to relay the location and other 

information to the AVL on the buses.  Using typical traffic patterns and normal 

bus stops, Nextbus is able to predict arrival times for the buses at each stop.  

These arrival times are updated regularly to ensure comfort and security of the 

riders.  Predictions are made available to the web, signs at bus stops, Internet 
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capable cell phones, and Palm Pilots.  Nextbus projects include MUNI-Metro 

Light Rail Vehicles, AC Transit-Alameda County Transit in California, Fairfax, 

Virginia, METRO Transit-Oklahoma City, Vail Transit, Massachusetts Bay 

Transportation Authority, MTD-Santa Barbara, and many others.  The following 

descriptions are from the websites of the individual agencies and include relevant 

information concerning the use of Nextbus systems: 

 
Arlington (10) On September 11, 2001 an 18-month, $100,000 pilot 

program in Arlington County, Virginia will install the Nextbus technology in 

the eight buses that run the 38B line.  Real time information messages will 

be relayed on 9 new electronic signboards.  

 
AC Transit (11)  The AC Transit in Almeda County in California is using the 

Nextbus technology as pilot project.  The system is being used on the 

heavily traveled San Pablo corridor (72, 72L, and 73 lines).  Their project 

enables riders to get bus information over the Internet. 

 

Fairfax CUE (12) The City-University-Energysaver (CUE) Bus System that 

serves the city of Fairfax and George Mason University in Virginia is 

equipped with Nextbus equipment that uses computer modeling to predict 

bus arrival times.  Each vehicle is equipped with a satellite-tracking device 

that allows bus arrivals to be estimated within a minute, with 95 percent 

accuracy.  CUE bus system provides information that can be relayed to 

the web, signs at bus stops, Internet capable cell phones, and Palm Pilots, 

to provide real time information to patrons.    

 

Vail Bus Service (13) Beginning on June 23, 2001 the Town of Vail, 

Colorado started using the Nextbus System.  The following areas are 

using the systems:  Vail Village, LionsHead and Golden Peak corridor.  

Location information is transmitted every 90 seconds to the AVL system at 
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the central dispatch center.  The town is currently evaluating options that 

would add the Nextbus system to outlying areas of Vail. 

 

San Francisco Municipal Railway (MUNI) (14) A 9.6 million-dollar 

contract was awarded to Nextbus to install their technology on all of their 

transportation equipment.  The equipment was tested on light rail lines 

and also on one bus line, 22 Filmore, that serves 20,000 passengers a 

day.  The system will provide GPS equipment on all buses and trains.  

Cable cars and streetcars in San Francisco would also use the 

technology.  Part of the project also includes installing 430 electronic 

informational signs.  GPS “information is sent to a centralized server and 

compared with historical information and the bus or train arrival is then 

projected and available via wireless devices such as phones and 

handhelds.”  The project is expected to take nearly five years to fully 

complete on all lines.  

 
 

Tri-Met – Portland, OR 
 
The Tri-Met Transit Tracker system provides real time transit vehicle arrival time 

information to patrons on stations of selected routes. (15) The total cost of the 

project (Transit Tracker) is estimated to be $ 4.5 million with the City of Portland 

paying $ 3 million and Tri-Met paying $1.5 million.  The Transit Tracker system 

will work with a dispatching system that is already in place, which utilizes AVL 

and APC technologies.  The initial system has led to many improvements: 

 

• Overall improvement of on-time 69 percent to 83 percent. 

• Early arrivals declined from 15 percent to 5 percent. 

• Schedules have improved using information provided by the Bus 

Dispatching System. 
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The Transit Tracker system was expected to be used to relay real time 

information at 50 rail stations and 250 bus shops initially.  This will be followed by 

deployments of approximately 50 stations per year.  The system will also provide 

the information to the Internet.  The following improvements will also be 

implemented in the near future for use with the existing AVL and APC: Transit 

Signal Priority, LIFT Scheduling System Upgrade/Electronic Data Transmission, 

Automated Stop Announcements, Bus Dispatch System Upgrade, Scheduling 

System Software Procurement, Radio and Microwave Replacement Project (with 

Motorola Gold), DISPATCH Operations Utilities Program, LIFT Program 

Integrated Voice Response, and Automated Yard Mapping and Vehicle 

Assignment. 

 
AOS – Ann Arbor, MI 
 
In Ann Arbor Michigan a fully automated Advanced Operating System (AOS) 

began to use in 1998. (16) It was expected to offer a “fully integrated public transit 

communication, operation, and maintenance system.”  The Ann Arbor Transit 

Authority (AATA) serves over 4 million riders a year, with 27 bus routes that are 

offered 7 days a week, 24 hours a day. Each bus utilizes the following 

equipment: 

 

Advanced Communications: Each bus has an 800 MHZ radio and onboard 

computer that minimizes “voice transmissions by providing data messages that 

summarize vehicle status, operating condition, and location.”  The driver can also 

switch to a voice system.  The system is responsible for relaying all information 

and for onboard announcements. 

 

AVL: Each bus uses GPS to determine their own location, accuracy is within one 

to two meters.  An insertable memory card stores the bus routes and compares 

them to the accurate time given by the GPS system.   If this comparison 

determines the bus will not be on time the onboard computer notifies the 

Operation Center and the AVL relays the announcement to the internal next-stop 
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signs and announcement.  The AVL also integrates location data with fare 

collection, passenger counters, and engine data that are controlled electronically.  

Dispatchers are able to manage the system and assist drivers by inserting 

overload vehicles in the system or offering route suggestions.  

 

Emergency System: An onboard emergency system allows drivers to alert 

dispatchers of an emergency, who in turn can note the bus positions and notify 

the proper authorities.   

 

En Route Information: Onboard the bus stop announcements, date, time and 

route are relayed to patrons. The driver can also activate timed and periodic 

announcements. 

 

Geographic Information System: The Rockwell MapMaster is also a part of the 

AOS on AATA buses.  It allows you to enter locations of bus stops and routes.  

The data can be “imported to the route generator GIS system.”  The GIS system 

then creates schedules time points, announcement points, transfer points and 

bus stops by route. 

 

Computer-Assisted Transfer Management: This system, TransitMaster, allows 

drivers to request transfers that are then calculated by the dispatch computer that 

advises the drivers whether a transfer is possible or not.  

 

Other benefits provided by AOS include fare collection, ability to relay real time 

information to patrons, APCs, video surveillance (3 cameras on each bus), and 

vehicle component monitoring.  The video surveillance has lead to improved 

cleanliness on AATA buses.  Rider information is provided through the use of 

public access cable, monitors at the transit center, and the web.  Reviews of the 

system have found improved departure time accuracy, potential long term cost 

savings, and an online survey of users found the system very favorable.  The 

study also found that its AVL system has a median positional error of 85 meters, 
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ranging as high as 580 meters and as little as 3.25 meters.  The inaccuracy was 

believed to arise from “differential GPS correction deterioration in outlying areas”.   

 

MyBus – Seattle, WA 
 
The Transit Watch system is an ITS Research Program at the University of 

Washington (17) for the King County Metro Transit.  It is part of the Federal 

Highway Department Smart Trek: Intelligent Transportation Infrastructures, 

Model Deployment Initiative.  Computers have been installed at the Northgate 

and Bellevue Transit Centers where Transit Watch has been available to bus 

riders since July 1998.  The Transit Watch program includes 4 primary parts: (1) 

the prediction server (Predictor), (2) data distribution server, (3) the client display 

applet (Transit Watch), and (4) a database.  The entire system utilizes an object-

oriented Java Language.  The Predictor predicts the arrival times.  A Predictor is 

available at each location that the Transit Watch provides an arrival prediction. 

The Predictor receives data from an AVL and reads the active trips, trips that are 

scheduled to depart the prediction site in a particular time window.  A trip tracker 

“uses a tracking algorithm to combine the current position of the bus with 

historical data about the trip to predict the arrival time.”  When new data is 

received, the predicted time is updated.  Information is collected and can be 

displayed on the Internet or web-capable phones, which is the function of the 

second component. The third and fourth components backup and save 

information for subsequent uses. 

 

Dailey and Maclean (18) described the ability of the MyBus system to forecast 

arrival and departure times, focusing on the system and how it works to predict 

the necessary information.  The algorithm used by the predictor will be discussed 

in a later section. 

 
RTD – Denver, CO  
 
RTD is an agency that was previously mentioned in this report in regard to the 

workforce. The Department of Transportation (8) further analyzes the 
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effectiveness of an AVL system installed in Denver, Colorado by the Regional 

Transportation District (RTD).  The system was installed in 1993; however, it was 

not used until 1996 due to a number of difficulties. After most of the installation 

was complete and the system was being used a number of employees were 

surveyed to determine their feelings about the system. Operators, dispatchers, 

and field supervisors were all surveyed.  Most of those surveyed found the 

system to be easy to use, helpful in emergencies, and accurate and reliable. 

Several did mention that the system was not working properly at all times. This 

was explained by the difficulties of installation. A survey of patrons was also 

conducted, finding that 90 percent of passengers thought the bus service was 

good or better. 

 

Along with the surveys, a cost analysis was also conducted.  The final cost of the 

completed system was 10.4 million dollars, with in-vehicle hardware accounting 

for half of that cost. The overall results of the system were found to be 

successful; however, there were a number of problems.  The system has helped 

workers, patrons and improved accuracy, but the RTD did not use the improved 

data to improve schedules.  This fact was used to explain a minimal increase in 

efficiency.  The system was not used to its fullest ability due to the functional 

problems experienced in the beginning of installation. 

 
 
Other Practices 
 
The FTA (1) documents the use and deployment of all types of intelligent 

transportation systems, including that used for transit agencies.  The report 

states that the benefits of using an AVL system are improved dispatching and 

operational efficiency, improved reliability of service, quicker response to 

disruptions in service, quicker response to criminal disruption, and extensive 

information at a lower cost that can be used for future planning.  In addition a 

number of cities and agencies were used to evaluate the use of AVL systems.  

The cities are listed below: 
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Essex County, New Jersey – The New Jersey Transit (NJT) AVL system has 

been in place and working since early 1998.  NJT purchased a signpost and 

odometer system as well as a statewide 23-tower radio system from Motorola.  

Two thousand buses on 26 lines in Essex County are operated fully with the AVL 

system.  It was also reported that there were only about 100 of the original 600 

signpost remaining due to weather problems.  Due to this fact AVL is not 

available Statewide, but radio communication is. 

 

Chicago, Illinois – An AVL system utilizing dead reckoning with DGPS correction 

is used by the Chicago Transit Authority (CTA) on 1210 of the agencies 1872 

buses.  At the time of the report emergency location and text messaging were 

available, while new radios were needed for further capability.  It was reported 

that the CTA has 12,900 stops and coding of the first 1,000 took 3 months.  Once 

this is completed 254 buses will operate with both the AVL and new radio 

systems.  CTA expects to provide the equipment on the rest of the fleet as new 

buses are acquired.  At the time of the report they had a contract with NOVA for 

150 buses furnished with wiring compatible for the installation of AVL equipment.   

 

Baltimore, Maryland – A phased implementation plan is being utilized by the 

Maryland Mass Transit Administration (MTA) for acquiring their AVL system.  

Fifty buses were initially tested using the Loran-C AVL system.  Additionally MTA 

has purchased a DGPS system at an estimated cost of $15,000 per bus.  This 

includes a new radio system consisting of the radio and base station equipment.  

The project included AVL equipment for 380 of the 868 vehicles, while the rest of 

the fleet will be equipped as new vehicles are purchased – sixty-five new buses 

equipped with AVL were expected in late 1999 at a cost of 8 million dollars.  The 

plan includes passenger information being available by phone, along with limited 

information available by sign.  MTA expects to save 2-3 million dollars annually 

by the fourth to sixth year of operation via purchasing, operating, and maintaining 

fewer vehicles. 
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Rochester, Pennsylvania – The Beaver County Transit Authority (BCTA) are 

upgrading their Loran- C system to a DGPS system.  They hope to upgrade the 

system that has been in existence since 1991 to the DGPS system by 2000. All 

20 of BCTA’s buses will be equipped with the AVL system, and all new buses will 

be equipped with the appropriate wiring to install the system.  Along with the 

usual benefits of timesaving, the BCTA hopes to monitor contractors that operate 

the system and use it to investigate customer complaints.   

 

Of other interest, the report also offers discussion of the Operations Software for 

Fixed-Route Bus Operations, focusing on the most commonly used system-

Computer-Aided Dispatch (CAD).  The CAD system is used for bus service, as 

well as operations planning.  Customers are able to use it for itinerary planning 

and transfer connections.  The report discusses implementation challenges and 

noted that most of the agencies surveyed were still learning how to use the 

system effectively.  Most problems dealt with compatibility issues involving 

missing information and oversensitive location algorithms. 

 

Automated Passenger Counters (APC) system is also discussed in detail in this 

report.  The primary benefits of the APC’s are the reduced cost to collect 

information and an increase in the amount and quality of the information 

collected.  APC make it possible to reduce or eliminate the need for manual 

checkers.  Several cities using APC’s are examined in the report and some are 

discussed here briefly: 

 

Columbus, Ohio – The Central Ohio Transit Authority (COTA) began using APCs 

in 1984, when it acquired 37 units.  The units purchased from Urban 

Transportation Associates for $171,000, was enough to equip about 10 percent 

of their fleet.  COTA reported a 95 percent accuracy of the counts, and found the 

system very useful.  COTA planned to upgrade their system with APCs that use 

vertically pointed infrared beams mounted in the roof of the vehicle to count 
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passengers.  The data will be transmitted in real time, and combined with AVL 

data to be used for planning and to improve schedules. 

 

Atlanta, Georgia – The Metropolitan Atlanta Rapid Transit Authority (MARTA) 

has installed 74 APCs on AVL-equipped buses.  MARTA reported that their data 

is between 80-85 percent accurate.  They use the counters to generate a great 

deal of information but feel that the systems should not replace manual checkers.  

As a result, they have not reduced the number of manual checkers that they 

used previously.  They also reported that APCs are the most difficult piece of 

APTS technology to upkeep, and that only about 40 of the 74 counters provide 

good information on any given day. Despite such maintenance problems they 

estimated a savings of 1.5 million dollars in operating expense per year. 

 

Baltimore, Maryland – The Maryland Mass Transit Administration (MTA) has 

used APCs on 25 buses since 1997.  The units count passengers using 

horizontal infrared beams and were acquired from Urban Transportation 

Associates.   The MTA plans to purchase 75 more APCs in order to equip over 

10 percent of their fleet.   

 

Newark, New Jersey – New Jersey Transit plans to purchase 170 APC units for 

its buses.  The units will be considered as part of their AVL system.  Data 

transmission is planned to utilize wireless download after the bus returns to the 

garage.  The report states that the APCs will help NJT generate a greater volume 

of information and more accurate data to help them better understand ridership 

and to improve market research. 

 
 
Developed Applications 
 
Benefits and uses of the AVL system are also reviewed in relation to some of the 

cities where its use is being proposed. (19) These cities include Albany, NY, 

Eugene, OR, Los Angeles, CA, and Pittsburgh, PA.  Each of the city’s projects 
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incorporates the use of AVL and serves thousands of people a day on their 

transit system.  The projects are all in the design or implementation phase.  In 

Albany (20), the Capital District Transit Authority's primary bus route, with 20 

percent of the system's passengers, runs 16 miles from Albany to Schenectady.  

The project for Albany includes signal coordination to optimize bus signal priority.  

They hope the program will lead to shorter bus route times, improved service to 

three major routes and higher frequency service.  In Los Angeles, Metro Rapid 

began on June 24, 2000 with the start of service of two routes, Whittier-Wilshire 

Boulevard (line 720) and Ventura Boulevard (line 750).  The Metro Rapid is 

expected to expand into as many as 15 to 20 new express lines.  The Metro 

Rapid is using ITS including AVL to increase the efficiency of the transit system.  

Similarly, many of the other cities are beginning with smaller testing areas, with 

plans of widespread expansion.  

 
 
Other Technologies 
 
During the course of implementation for the AVL and APC systems a number of 

other technologies have emerged, some of which were previously mentioned.  

Another product gaining attention is the Transit Integrated Monitoring System 

(TIMS). (21) This technology revolves around the use of Passenger Tags.  The 

tags are actually radio frequency identification cards, which “act as bus passes.”  

The cards are devised to integrate AVL and APC technologies.  The tags are 

used to uniquely identify passengers, and then keep track of their position using 

GPS satellites that monitor the bus.  The card is swiped as the passenger boards 

the bus and again activated as the passenger leaves the bus.  From this the 

arrival and departure times to be recorded, leading to improved information 

regarding “origin destination pairs, passenger transit times, and schedule 

adherence.”  Along with this valuable information, the cards can be used as a 

fare card, acting as a debit card or other billing techniques.  The three primary 

goals of the project as outlined by the author are: 
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• Advanced systems for transit vehicle location, identification, and 

management. 

• Improved methods of data collection about or from transit users. 

• Advanced systems for fare collection and control systems. 

 

Costs and Communication 
 
The John A. Volpe National Transportation Systems Center studied several 

agencies that utilize AVL systems. (4) The study focused on a number of variables 

including cost.  They found the median cost per system was reported to be 

$8,000, with a range from $1,200 to $23,000.  The wide range of cost was 

explained by varying functions performed by each system.  The study found that 

only operations software and pre-trip automated passenger information had 

widespread use.  It is believed, however, that many other related technologies 

will reach widespread or moderate levels of use in the near future. This is based 

on the number of agencies that have plans to implement the technology. 

 

A TCRP synthesis also comments on the cost of implementing advanced 

technology systems. (6) Based on this information gathered it was concluded that 

the technology is increasing as agencies begin using GPS type information, 

rather than the older signpost method.  As a result, the performance of the 

infrastructure and onboard equipment has increased.  Consequently, GPS 

systems, which allow for complete coverage, are now being used in most new 

installations.  A major cost of the system, one to two-thirds, involves integration 

of a communication system.  One particular agency, MTD, which provides real-

time information to the public, reported a two percent increase in ridership with 

increased customer satisfaction.  At the time of the report many agencies did not 

provide real time information to their passengers.  Also at the time of this report 

an average cost of $13,700 per bus was reported, with some smaller agencies 

paying more due to fewer units purchased.  
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As mentioned previously, the influx of information is insignificant without 

increased communication abilities.  Communication of real time information 

through wireless phones, electronic message boards, websites, and personal 

digital assistants are becoming popular.  The Metro King County MyBus site, for 

example, has had a significant increase in the number of hits since providing real 

time information.  Other sites offer real time maps and bus information to keep 

their patrons informed.    

 

Prediction Algorithms 
 
Many forecasting methodologies have been applied to transportation research, 

such as prediction of traffic volume, travel time, etc.  Particularly, various bus 

arrival time prediction models have been developed using different 

methodologies, such as time series, artificial neural network, and Kalman filtering 

algorithm.   

 
MyBus Application 
 

The predictor for MyBus utilizes three pieces of information including that 

collected from the posted schedule, a set of previous trips, and the AVL stream.  

The AVL system supplies information every one to three minutes per vehicle, 

while the previous trips provide statistics to the systems algorithm used for 

prediction.  The prediction algorithm uses the Kalman filtering technology.  

Specifically, vehicle location, time, and time until arrival were considered as state 

variables. The reported position and its time measurement were observables.  

The predictor in Seattle is capable of making 25,000 predictions every 10 

seconds. (18) The time and distance to the destination, the bus stop, are 

calculated for each prediction.  The deviations were modeled as a probability 

surface to show the accuracy of the system. (22) The analysis made by the 

authors found the system to reduce errors by 50 percent to 75 percent, as 

compared to the schedule alone.   
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Since the observations of vehicle location can only be recorded at irregular 

intervals. Typically, linear interpolation was applied to obtain estimated arrival 

times.  Using the latest bus location and time data, the Kalman filter continuously 

predicts the arrival time. 

 
Blacksburg Transit Application 
 
Algorithms were developed for a transit traveler information system in 

Blacksburg, Virginia to predict bus arrival time at rural setting (23) GPS data was 

gathered at variable time intervals, including location and time label.  However, 

because of its inherent constraints (no fixed sample period, erroneous reports), 

the accuracy of the prediction is compromised.   

 

Four algorithms were developed in the study based on various data sources as 

input: 

 

• GPS bus location data only 

Arrival time at the downstream time point is estimated based on the arrival 

time at the upstream time point and historical travel time between them. 

• GPS bus location data and bus schedule table 

Bus arrival times at nearby downstream time points are based on GPS 

data while assuming current delay has little impact on the arrival time at 

downstream stops that are far away.   

• GPS bus location data, bus schedule table, and delay 

This algorithm takes into account the fact that bus drivers tend to adjust 

their speeds (within speed limits) in order to arrive on time.  So the current 

delay of the bus is taken as an input.   

• GPS bus location data, bus schedule table, delay, and time check point 

This algorithm is based on the 3rd algorithm  with an added input as dwell 

time at time check point since it is usually much longer than that at other 

stops.   
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Performance of these algorithms was compared based on criteria including 

overall precision, robustness, and stability. The 4th Algorithm outperformed all 

other ones.  However, it was also concluded that the algorithm performance was 

also location dependent.   

 
Texas A&M University TransLink Lab 
 
Two algorithms, time-based and distance-based, for predicting travel time of 

campus buses were developed at the TransLink Lab of the Texas Transportation 

Institute at the Texas A&M University. (24) 

 

In the time-based model, bus route between two stops was divided into a series 

of one minute zones, and estimated arrival time can be obtained by locating the 

bus on the route to see how many one-minute zones it needs to traverse to reach 

the stop.  This method is based on historical travel time data and therefore 

cannot capture real time traffic variations.   

 

The distance-based algorithm uses the distance to a bus stop and time of the 

day as independent variables.  Particularly, the algorithm takes into account the 

variations in running speeds and dwell times of a bus both during class and 

during the pedestrian congestion of class breaks.   

 

Comparisons of the prediction results with actual arrival time showed that the 

distance-based algorithm had a better performance, i.e., with relatively small 

deviation.  However, it was more complex and cost more to calibrate.   

 
 
NJ Transit Bus Route 39 
 
Chien et al. (25) developed a bus arrival time prediction model that combined the 

forecasting capabilities of artificial neural network (ANN) and dynamic filtering 

techniques. ANN was chosen because it was proved to be a powerful tool to 

simulate complicated systems, especially those with large number of variables 
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and complex correlations among these variables that are difficult to be explicitly 

modeled.  Dynamic filtering technique was applied to adjust the ANN prediction 

output using most recent readings from the bus location as well as traffic 

information.   

 

This model was established based upon simulation data generated from a model 

that was calibrated and validated on New Jersey Transit Bus Route 39.  The 

simulation model was able to provide various traffic data such as volume, 

passenger demand, speed, delay, etc. as the input to the prediction model.  

Various combinations of these variables were experimented in the ANN training 

process, and the most relevant ones were identified.   

 

Two algorithms, link-based and stop-based, were developed.  The former 

assumes additive link travel time/cost, and generally defines the segment of the 

route that is between two adjacent intersections as a link.  The latter is 

established based on aggregated data at each bus stop including demand and 

volume, speed between to adjacent stops.   

 

Performance evaluation showed that link-based algorithm outperformed the stop-

based one when the number of intersections between a pair of stops is relatively 

small, while the latter one accommodated the stochastic conditions at further 

downstream stops better.   

 
 
Media for Information Dissemination 
 
This section will discuss the media for information dissemination from Federal 

Transit Administration (FTA). (26) The types of media that are of interest in the 

literature include those listed below in Table 1. These media have been 

designated either interactive or non-interactive.  
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Table 1Media for Information Dissemination 

 
Interactive Media Non-Interactive Media 

Internet DMS’s 

Interactive voice response (IVR) via telephone Video monitors 

Interactive kiosks Fax 

PDAs Non-interactive kiosk 

Wireless Application Protocol (WAP)-enabled Telephones (voice information) 

Mobile Phones Cable television 

 
Different from Non-interactive media, interactive devices (such as kiosks and the 

Internet) allow users to timely get the information they are seeking. Within the 

two types of media, DMS and the Internet, respectively, were referred with the 

most in the literature. Hence, more extensive evaluations of the other types of 

media may be required in the future to arrive at a better understanding of these 

systems. 

 

Peng and Jan (27) evaluated dissemination media for real-time transit information 

(e.g., pagers, the Internet, and PDAs).  For each media type, they provided a 

general description, including its advantages and limitations. all the studied 

media were evaluated based on their accessibility, versatility and interactivity, 

information-carrying capacity, user friendliness, cost to install, cost to use, and 

ease of implementation.  The Internet and kiosks were found to be the best 

media overall. DMS and closed-circuit television (CCTV) were considered good 

dissemination media because of their modest cost and flexibility in the variety of 

provided information. PDAs and automated voice annunciators were promising 

technologies for real-time transit information systems, but were not ready for 

implementation when the paper was published. Reviews on interactive media are 

discussed below: 
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Internet 
 
As part of the Smart Trek Metropolitan Model Deployment Initiative (MMDI) in the 

Seattle, Washington area, two new applications were created to provide real-time 

transit information. (28) Two types of media were used to relay the information to 

the transit passengers: (1) on the Internet and (2) at the transit center.  Busview 

displays the real-time location of all the transit vehicles operated by King County 

Metro.  Transit Watch is a real-time arrival prediction system suitable for 

deployment in transit centers.  Busview and Transit Watch are designed to 

operate over the Internet. 

 

The Transit Watch project deployed an Advanced Public Transportation System 

APTS /ATIS that predicts the arrival status of transit vehicles.  This prediction 

results in one of four states:  (1) On Time, (2) Delayed “n” Minutes, (3) Departed, 

and (4) No Information.  The goal of the project was to develop an interface that 

promotes the use of transit by reducing the stress inherent in transfers.  This 

project leverages the ITS Backbone component of the SmartTrek MMDI project.  

This project was originally designed to be deployed at three transit centers, but it 

has since been made available on the Internet as well. 

 

Stuart Maclean and Daniel Dailey (29,30) discussed the dissemination of real-time 

transit information to a WAP cellular phone. The use of WAP phones was an 

extension of the ongoing Internet-based MyBus program in Seattle, Washington.  

In that study, challenges such as limited display area and capability of using 

WAP phones for real-time information were discussed.  To compensate for the 

phone’s physical restrictions, MyBus maximized its use of the screen by 

combining information, such as scheduled arrival time and departure status, into 

one data field.  Future work for this project includes formatting bus arrival data for 

PDAs. 
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Dynamic Message Signs (DMS) 
 
DMSs at bus stops are used mainly to provide arrival or departure information to 

reassure the customer that s/he is waiting for the right vehicle in the right place 

and to inform him/her the vehicle arrive times.  In many cases, bus stop displays 

also are used to provide static information about the transit service and to display 

advertisements. The sample systems using DMSS include VIA system 

(Visualizzazione Informazioni Arrivi) in Turin, Italy, COUNTDOWN system in 

London, and Los Angeles Metropolitan Transportation Authority (MTA).  

 

Interactive Voice Response (IVR) 
 
IVR telephone information systems allow customers to call a single phone 

number and navigate a menu for needed information.  Previously, transit 

customer service operations relied on agents to provide various types of 

information over the telephone.  For many years, automated telephone 

information systems assisted agents in answering routine questions.  The new 

systems eliminate the need for agent involvement in many information 

requests.(31) One problem with IVR systems is that they do not always have good 

voice recognition.  However, speech recognition technology has improved 

recently.  Another difficulty noted in the literature is that some systems 

incorporate automated distribution features for information that would be too 

time-consuming to provide over the telephone.  In these cases, information can 

be sent via fax or e-mail. (31) One of the real-world systems applying IVR is the 

Bay Area’s TravInfo® project. 

 
Interactive Kiosks 
 
Kiosks can be located in a variety of places, including near public transit, in 

stations, at stops, or in other high foot-traffic locations (e.g., in shopping malls).  

They can also be located at places with high concentrations of people, such as 

public buildings and tourist locations.  The literature suggests that information 

available via kiosks usually includes: Travel information, (e.g., optimum route, 
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itineraries, and arrival times at specific locations) and general information (e.g., 

scheduled activities in the city or metropolitan area). 

 

Several functional characteristics of kiosks should be taken into account when a 

kiosk is being considered.  These characteristics include: 

 

• Simplicity of the user interface. 

• Provision of useful and understandable answers to the user request. 

• Effective location. 

• Appropriate housing. 

• Efficient maintenance. 

• Use of standards. 

 

According to the literature, kiosk users mainly have problems with the touch keys 

and/or the touch screen, as well as with the time required to wait until they get 

the system response.  However, the general level of satisfaction is rather good.   

 
Video Monitors 

 

According to Advanced Public Transportation Systems:  The State of the Art 

Update 2000, (31) video monitors are often used when a large amount of 

information needs to be displayed and where flexibility in using graphics, fonts, 

and color is needed.  A video monitor providing real-time arrival updates would 

be less suited to a central display near a group of bus berths, since transit users 

might be uncomfortable moving away from the berth and losing their places in 

line to get close enough to read the display.   

 
Personal Digital Assistants (PDA) 
 

Hand-held PDAs recently appeared as information media in the transit field.  The 

traveler can consult them at any moment anywhere.  PDAs can be used to obtain 

pre-trip and en route information.  Advanced Public Transportation Systems:  The 
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State of the Art Update 2000 (31) claimed that one issue with PDAs is the 

reluctance of customers to pay for traveler information via pagers or handheld 

computers.  However, private sector companies are devising ways to provide 

more “value added information,” such as personalizing information on a traveler’s 

commute by informing him/her when transit delays are occurring. 
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DATA COLLECTION 

 
 
APC Data 
 
 
The collected APC data of Year 2002 consisted of January Pick (from January to 

June, 2002), June Pick (from June to September, 2002), and September Pick 

(from September to December, 2002), which were retrieved from the APC 

database at NJ Transit. The OD pair on Route 62 between Woodbridge Center 

Mall and Newark Penn Station was selected as the studied route, in which bus 

service was provided by different patterns. Bus running on different patterns will 

be assigned a unique pattern abbreviation. For example, there are a total of 10 

patterns recorded on both in and out-bound trips for this specific OD in each pick 

data. All attributes in each APC record that might be related to this project are 

summarized in Table 2: 

 

GIS Data 
 
 
With the collected APC data, GIS could efficiently capture, store, retrieve, update 

and display all these information. In addition, GIS could perform advanced 

analysis on segment and route level using APC data and enhance demonstration 

function. Such applications can improve the quality of bus operational data and 

strengthen the database validation for travel time prediction and planning. Thus, 

it has proved to be an efficient and a powerful tool for analysis data in public 

transit.  
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Table 2 APC  Data 

Variable Description 

Sched Run Time Scheduled run time of the bus in the entire trip 
Actual Run Time Actual run time of the bus trip 
Sched Start Scheduled start time of the trip 
Sched End Scheduled end time of the trip 
Actual Start Actual start time of the trip 
Actual End Scheduled end time of the trip 
Time Of Day Starting time of the trip 
Transit Day Date of the service 
Open Time Recorded bus door opening time 
Close Time Recorded bus door closing time 
Stop Description Stop description 
Stop Sequence A unique number attached to all intended stops along the 

route. It has a value of 10 at the origin and increases in 
increments of 10 for subsequent stops. 

Time Point ID Time Point indicator number 
Direction Service direction (Inbound or Outbound) 
Trip Status Trip status (Start or End)  
Lat Latitude 
Lon Longitude 
On Number of boarding passengers at a stop 
Off Number of alighting passengers at a stop 
Stop Distance Travel distance between two consecutive stops 
Dwell Time The bus door open time at any particular time-point. They 

are derived from the original data as, the cumulative time 
that the vehicle halted at all intermediate stops. 

Leave Psgr Load Number of onboard passengers when the bus leaves a stop
Arrive Psgr Load Number of onboard passengers when the bus arrives a stop
Leg Time Inter-stop travel time. The difference of door open time at a 

subject stop and door close time at previous stop. 
Origin Origin of the trip 
Destination Destination of the trip 
Pattern ID 4-digit number associated with each pattern in each pick 

data file.  
 

Trip Index Unique index associated with a trip 
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The GIS data related to the studied route were provided by NJ Transit, including 

all traversed streets by all patterns running on Route 62 and the locations of all 

potential stops. The traversed streets are stored into a GIS file, which can be 

compiled by a GIS software (e.g., Arcview, MapInfo). All locations for the 

potential stops are stored in a MS-Excel file, which could also be retrieved by the 

GIS software. The configuration of the studied route and its adjacent streets is 

shown in Figure 1. All potential stops on the studied route and the GIS diagram 

of Bus Route 62 alignment are shown in Figures 2 and 3, respectively. 

 
 
 
 
 

 
 
 Figure 1 Configuration of the Studied Route and Its Adjacent Streets 
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Figure 2 Potential Stops on the Studied Route 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Alignment of Bus Route 62 in GIS 
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Weather Data 
 
The weather information was obtained from the National Climatic Data Center (at 

Asheville in North Carolina and Boulder in Colorado). Newark International 

Airport Station in NJ is selected as the observation station because it is the only 

station that collected weather data covering the studied route.  The weather 

information includes hourly temperature (e.g., dry bulb temperature), precipitation 

(e.g., rainfall and snowfall), and sky conditions (e.g., visibility and wind speed)  

 

To access the hourly weather information, a step-by-step procedure is listed 

below: 

Step 1: Log in National Climatic Data Center (NCDC) website at: 

http://lwf.ncdc.noaa.gov/oa/climate/stationlocator.html. The webpage of the site is 

shown in Figure 4. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4 NCDC Weather Observation Stations 

   37

http://lwf.ncdc.noaa.gov/oa/climate/stationlocator.html


Step 2. Input station name “Newark Airport Station” and hit "Search". A new page 

is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Newark International Airport Station 

Step 3. Click "DATA" in the upper right portion of the page in figure 5. A new 

page is shown in Figure 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 4. Cli

page is sho

 

Figure 6 Weather Information of the Selected Station 

ck "Hourly/Daily Data, Local Climatological Data (Unedited)". A new 

wn in Figure 7. 
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Figure 7 Time Period Selection for Querying Weather Information 
 
Step 5. The hourly weather information for the selected month can be obtained. 
A new page is shown in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Example of Collected Weather Information 
 
After applying this procedures, the historic weather information at selected 

locations could be retrieved from the website. The attributes of the data available 

from NCDC are listed in Table 3, in which the precipitation data variable is used 

to develop prediction model in this study.  
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Table 3 Weather Data Provided by NCDC 
 

 

Date Time Station Type Maintenance 
indicator Sky Condition 

Precip.Total Visibility Weather Type Dry Bulb Temp 
(F) 

Dew Point Temp 
(F) 

Wet Bulb 
Temp(F) 

% Relative 
Humidity Wind Speed(KT) Wind Dir Wind 

Char.Gusts(KT) 

Val. For Wind 
Char. Station Pressure Pressure 

Tendency 
Sea Level 
Pressure Report Type 

 
Field Data 
 
Since the geometric characteristics of the studied route may affect bus travel 

times, it is necessary to collect related information along the route. While visiting 

the studied site, the research team rode the bus to record the number of left/right 

turns, the numbers of intersections with and without signals, and the bus 

exclusive lane on each segment between consecutive time points, which might 

affect the bus travel time. There were no bus exclusive bus lanes on the studied 

route, and all collected geometric information is shown in Tables 4, 5 and 6. 

 
Table 4 Time Points Description on the Timetable 

 
Number Time Point Description 

1 PENN STATION BUS LANES 

2 BROAD ST & BRANFORD PL 

3 NWK AIRPORT TERM A 

4 FEDERAL EXPRESS - NEWARK AIRPORT

5 IKEA 

6 BROAD ST & W JERSEY ST 

7 SAINT GEORGES AVE & WOOD AVE 

8 IRVING ST & BROAD ST 

9 W INMAN AVE & ST GEORGES AVE 

10 INMAN AVE & WOOD AVE 

11 NJT METROPARK STATION 

12 WOODBRIDGE CENTER MALL 
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Table 5 Field Data for Pattern PAIWM 
 

  Number of Intersections Number Of Turns 

Outbound Signalized Non-signalized Right-turn Left-turn 

1-2 6 0 1 4 

2-3 12 13 10 2 

3-4 1 1 0 1 

4-5 2 0 1 4 

5-6 9 3 4 3 

6-7 15 0 1 1 

7-8 12 5 1 2 

8-9 2 6 2 1 

9-10 5 8 0 1 

10-11 10 3 3 2 

11-12 10 4 4 2 

 
 

Table 6 Field Data for Pattern WMIAP 
 

 

 

  Number of Intersections Number Of Turns 

Inbound Signalized Non-signalized Right-turn Left-turn 

12-11 8 5 4 4 

11-10 10 1 2 3 

10-9 5 7 0 0 

9-8 2 5 1 1 

8-7 12 5 2 2 

7-6 16 0 1 1 

6-5 9 3 3 4 

5-4 2 0 4 1 

4-3 1 1 1 0 

3-2 12 7 8 2 

2-1 8 0 1 0 
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SELECTION OF STUDIED PATTERNS AND SOFTWARE 

 
Selection of Study Patterns  
 
The Bus Route 62 of NJ Transit operating on Essex, Union and Middlesex 

counties in New Jersey was selected as the studied route of this project. APC 

devices were installed on buses running along this route to monitor bus 

operation. The whole Bus Route 62 starts from Newark Penn Station and ends at 

Perth Amboy with a total distance of 29.5 miles on the outbound. There is a total 

17 time points located along the bus route as shown in Figure 9, for which the NJ 

Transit provides the scheduled arrival times on the timetable. 

 

 
 
 

Figure 9 Configuration of Bus Route 62 
 
 
In the collected APC data (e.g., January pick, June pick or September pick in 

2002), 10 patterns were found for the studied OD pair (between Newark Penn 

Station and Woodbridge Center Mall), which can be classified into inbound and 

outbound patterns. The sample size was an important criteria for selecting 

studied patterns. The inbound patterns of WMIAP and WM-AP and outbound 

patterns of PAIWM and PA-WM were finally identified for developing prediction 

models. Buses attributed to the same pattern would serve the same number and 
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sequence of time points. The time point sequence for studied patterns are listed 

in Tables 7, 8, 9, and 10. The GIS diagram of the studied patterns is shown in 

Figure 10. 

 
 
 

Table 7 Time Points for Pattern WMIAP (inbound) 
 

Time Point Description Distance to Start Point (mi) 

WOODBRIDGE CENTER MALL 0.00 
NJT METROPARK STATION 3.77 
INMAN AVE & WOOD AVE 7.14 

W INMAN AVE & ST GEORGES AVE 9.67 
MAIN ST & E MILTON AVE 10.81 

SAINT GEORGES AVE & WOOD AVE 13.74 
E JERSEY ST & BROAD ST 17.30 

IKEA 21.06 
FEDERAL EXPRESS - NEWARK AIRPORT 23.16 

NWK AIRPORT TERM A 24.05 
NWK AIRPORT TERM B 24.65 
NWK AIRPORT TERM C 25.15 
BROAD ST & EDISON PL 28.97 

PENN STATION BUS LANES 29.63 
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Table 8 Sequence of Time Points for Pattern PAIWM (outbound) 
Time Point Description Distance to Start Point (mi) 

PENN STATION BUS LANES 0 
BROAD ST & BRANFORD PL 0.76 

NWK AIRPORT TERM A 4.56 
NWK AIRPORT TERM B 5.01 
NWK AIRPORT TERM C 5.52 

FEDERAL EXPRESS - NEWARK AIRPORT 7.70 
IKEA 9.78 

BROAD ST & W JERSEY ST 13.74 
SAINT GEORGES AVE & WOOD AVE 17.16 

IRVING ST & BROAD ST 19.94 
W INMAN AVE & ST GEORGES AVE 21.13 

INMAN AVE & WOOD AVE 23.66 
NJT METROPARK STATION 26.86 

WOODBRIDGE CENTER MALL 30.03 
 

Table 9 Time Points for Pattern WM-AP (inbound) 
Time Point Description Distance to Start Point (mi) 

WOODBRIDGE CENTER MALL 0.00 
NJT METROPARK STATION 3.77 
INMAN AVE & WOOD AVE 7.14 

W INMAN AVE & ST GEORGES AVE 9.67 
MAIN ST & E MILTON AVE 10.81 

SAINT GEORGES AVE & WOOD AVE 13.74 
E JERSEY ST & BROAD ST 17.30 

NWK AIRPORT TERM A 20.86 
NWK AIRPORT TERM B 21.30 
NWK AIRPORT TERM C 21.81 
BROAD ST & EDISON PL 25.70 

PENN STATION BUS LANES 26.37 
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Table 10 Time Points for Pattern PA-WM (outbound) 
 

Time Point Description Distance to Start Point (mi) 

PENN STATION BUS LANES 0.00 

BROAD ST & BRANFORD PL 3.77 

NWK AIRPORT TERM A 7.14 

NWK AIRPORT TERM B 9.67 

NWK AIRPORT TERM C 10.81 

BROAD ST & W JERSEY ST 13.74 

SAINT GEORGES AVE & WOOD AVE 17.30 

IRVING ST & BROAD ST 20.86 

W INMAN AVE & ST GEORGES AVE 21.30 

INMAN AVE & WOOD AVE 21.81 

NJT METROPARK STATION 25.70 

WOODBRIDGE CENTER MALL 26.37 
 

Study Pattern (PennStation-Woodbridge Mall) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 The Studied Patterns in GIS 
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Selection of Software  
 
As mentioned earlier, the objective of this study is to develop a neural dynamic 

model for bus travel time prediction. The research team applied a well-developed 

commercial software to form the proposed model.   

 

Among various software packages, NeuroSolutions was selected because it is at 

the leading edge of neural network simulation technology.  Using an object-

oriented approach, NeuroSolutions allows user to create an artificial neural 

network (ANN) that is composed of individually simple components.  The network 

can be built through an icon-based design interface, which provides much more 

flexibility than a typical “black box” simulator. NeuroSolutions is capable of 

generating powerful ANNs to solve complicated problems.  A unique feature of 

the software is that it contains a comprehensive collection of probes that allows 

the user/designer to monitor every aspect of the ANN during training and testing.   

 

NeuroSolutions is one of the few products on the market that is able to handle all 

four types of problems: (1) classification, (2) function approximation, (3) 

prediction, and (4) clustering.  There are six different levels of the software: (1) 

educator, (2) users, (3) consultants, (4) professional, (5) developers lite, and (6) 

developers.  The level used in this study is “users-level”.   

 

NeuroSolutions has two separated wizards, NeuralExpert and NeuralBuilder, that 

one can use to automatically build an ANN to the design specification.  The 

NeuralExpert centers the design specification around the type of problem one 

wish to solve.  Based on this and the size of the data, it can intelligently select 

the size and architecture of the ANN that will produce a good solution.  The 

NeuralBuilder centers the design around the specific ANN architecture that one 

wish to build.  The network parameters such as the number of hidden layers, the 

number of processing elements, and the learning algorithm can be customized.  

In addition, genetic algorithm is available to optimize these parameter settings at 

the user/designer’s choice.  
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DATA PROCESSING 
 
Data Screening  
 
There were many indices recorded in the APC dataset for each bus trip. Records 

that were missing or incorrect in the raw data file were identified and removed 

from the database. Different problems experienced while processing the APC 

data were itemized below as well as the corresponding solutions.  

 

The problems experienced in APC data: 

• Duplicated records. 

• Wrong start or end position. 

• Unreasonable arrival time along stops. 

• Missing data. 

• Inconsistent data (e.g., open vs. close time, scheduled vs. actual  

running time). 

• Times are recorded in different format (e.g., hour/minute/second, 

minutes). 

 

The corresponding solutions to the above problem: 

• Delete duplicated records. 

• Adjust start or end position. 

• Use actually arrival time at time points to interpolate the appropriate 

arrival. 

• Use speed and distance information to derive travel time. 

• Correct the wrong information. 

• Unify the format of all time indices. 

 
Data Calculation  
 
APC devices installed in buses can record the numbers of boarding and alighting 

passengers when bus doors were opened to serve passengers. Therefore, there 
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was no record for the skipped time points. The cumulative numbers of boarding 

and alighting passengers and dwell times at stops were calculated for those 

missing time points. In order to provide sufficient data to develop proposed 

prediction models, the completed cumulative numbers of boarding and alighting 

passengers and dwell times at all time points are also generated. 

 
 
Data Interpolation 
 
The ideal data structure for observing bus operations is a set of successive time 

point records. Thus, the actual bus travel times between time points can be 

compared with that posted on the timetable. However, in the APC dataset, some 

records were missing because buses skipped the time points where there was no 

demand at that time. In order to generate a completed time point to time point 

(TP-to-TP) information, the missing data at some TPs were approximated based 

on the available information at adjacent TP. 

 

An interpolation algorithm is developed to derive arrival time for the skipped time 

points based on the previous and next time point records. Though the bus arrival 

times of the skipped time points can be obtained by assuming the bus operated 

with a constant speed between two several time points, other information such as 

dwell time and number of boarding passengers are still unavailable. Thus, the 

actual dwell times and number of boarding passenger information at the skipped 

TPs were obtained similarly.   

 

The ideal data structure should include all the time points in sequence for each 

trip. As mentioned earlier, in the APC data, records at skipped time points were 

unavailable and then an interpolation is needed to approximate bus arrival 

information. The interpolation was illustrated as follows: 
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Summary 
 
After processing the original APC dataset, the calculated data and interpolated 

data need to be merged with the weather data as one dataset for developing 

prediction models. The unique index was chosen between two different datasets. 

For example, “month/date/hour” could be used to merge weather data with the 

APC data, and “month/date/pattern/tripID” could be used as the unique index to 

merge calculated data (e.g., cumulative boarding and alighting passenger at 

each stop) with the original APC data. After merging the collected data including 

bus arrival times and numbers of boarding and alighting passengers at all time 

points, weather information, and accumulated dwell times between pairs of time 

points were processed and ready for developing the proposed predictive models.  
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MODEL DEVELOPMENT 

 
Introduction 
 
As the primary form of public transit, bus service operates on urban streets with 

shared right-of-way with automobiles and commercial vehicles and trucks.  As a 

result, the service reliability of bus transit could be greatly compromised by 

various unexpected incidents along its route.  This also leads to inaccurate or 

unreliable arrival times, which incur a long and unpredictable wait time 

experienced by transit users.   

 

Advanced sensing, positioning, and communication technologies have provided 

a good platform to obtain reliable information on transit vehicle trip information.  

The Advanced Passenger Counter (APC) system deployed by New Jersey 

Transit on its partial fleet has been generating such information everyday.  This 

includes bus trip activities such as stop, door open/close, number of passengers 

boarding/alighting at each stop, and the associated temporal (e.g., time) and 

spatial (e.g., latitude) information. In addition, the ridership information that is 

usually expensive to obtain with traditional methods and is extremely valuable in 

estimating bus arrival times at downstream stops can be collected.   

 

In this chapter, a methodology that has been developed to predict transit vehicle 

arrival times using data generated by APC devices installed on buses operated 

by New Jersey Transit is presented next.   

 
 
Artificial Neural Networks (ANNs) 
 

ANN modeling techniques have been of great interest to many researchers.  The 

advantage of this technique is that it is unnecessary to assume a functional form 

between the dependent and independent variables. This is extremely useful 

when the data display non-linear relationship.   
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Using ANNs in forecasting has become more popular in transportation research. 

Related studies include Hua and Faghri (32), Chin et al. (33), Dougherty (34), 

Kalaputatu and Demetsky (35), Smith and Demetsky (36), Zhang et al. (37), Chang 

and Su (38), Wei and Yang (39), and Ding and Chien (40) Designed with versatile 

parallel distributed structures and adaptive learning processes, the ANN is 

considered as a promising approach to describe complex systems such as transit 

operation that is affected by various inter-correlated and time varying factors.  

 

Unlike other prediction models, the ANN does not require a specific form of 

function.  This eliminates the need of function development and parameter 

estimation for nonlinear and time varying systems.  A well-trained ANN could 

capture complex relationship between the dependent variables (output such as 

bus arrival time) and a set of explanatory/independent variables (input such as 

traffic conditions and passenger demand) (40).  Therefore, the ANN technique 

could be very useful in prediction when it is difficult or even impossible to 

mathematically formulate the relationship between the input and output.  

However, the extent to which an ANN is trained could have significant impact on 

its prediction performance, especially in some applications where only small 

amount of data is available for training. 

 

ANN Basics 
 

The ANN is a network consisting of interconnected units called processing 

elements (PEs, also known as artificial neurons because it has certain 

resemblance to the neurons in the human brain).  Each PE receives connections 

from other PEs and/or itself.  The signals transmitted through the connections are 

scaled by adjustable parameters called weights.  A weight is associated with 

every connection in the network.   

 

In this study, we are exploring the relationship between bus travel times and 

various inputs such as time of the day, day of the week, and weather 

    52



(precipitation).  Therefore, the ANN should be designed to solve problem with 

function approximation type.   

 

The multilayer perceptron (MLP) typed ANN architecture was chosen since it is 

generally easy to use and can approximate almost any input/output map.  It has 

been widely used in countless applications.  Its major disadvantages include slow 

training process and high demand on data amount.  A typical MLP architecture 

with one hidden layer is shown Figure 11.   

 

 
 

Figure 11 MLP with One Hidden Layer 
 
 
Back-propagation is the most commonly used algorithm in training an ANN (41).  A 

back-propagation network (BPN) is trained in a supervised mode, i.e., the 

weights of the network is continually adjusted to incrementally reduce the 

difference between the output of the system and the desired response.  Its 

general procedure is shown in Figure 12 (42). For a single layer network, 

corrections are made for the weights in proportion to the error between the 

desired output (e.g., actual travel time) and the network output (e.g., predicted 

travel time).  For a multiple-layer ANN, corrections have to be made for the 

weights from the first to the second layer, the second to the third layer, and so 

on. The stopping criterion could be a pre-set number of iterations, a specific 

output mean square error (MSE), or cross validation that is the most powerful 

one among them.   
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Figure 12 BPN Training Procedure 
 
In this study, cross validation criterion was chosen since it stopped the training at 

the point of best generalization (i.e. the performance in the validation set) is 

obtained.  A small part of the training data need to be set aside and used to test 

the ANN model.  When the performance starts to degrade in the validation set 

(i.e., cross validation MSE started to increase), training should be stopped.   

 

Processing elements can be combined into an ANN network in many different 

ways.  Determining the number of hidden layers used in BPN is a trial and error 

process.  Usually, one or two hidden layers are sufficient to create a model that is 

able to predict reasonably well.  It is worth noting that increasing the number of 

hidden layers beyond two often undesirably reduce the network’s ability to make 

better generalization or a better ANN model.   

 

The primary performance measure of an ANN is the MSE, which is defined as 

the mean squared error between the predicted and actual travel times, as shown 

below.  The lower the MSE, the better the model performs.  
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=P number of output neurons 

=N number of samples in the data set 

ijd =desired output for sample  at neuron i j  

=ijy network output for sample i  at neuron j  

 

Other performance measures include normalized mean squared error, percent 

error, etc.  

 
Applicability 
 
Using ANNs has an advantage over conventional prediction methods for it can 

handle complicated systems that are hard to formulate.  Unlike regression, which 

needs an explicitly defined function to relate the input and the output, the ANN 

can approximate a function and associate input with specific output after being 

properly trained.  This capability is extremely useful when the system is rather 

complex (such as transit operation) and/or it is impossible to specify a form of 

function to accurately represent the relationship between the input and output.  

Moreover, an ANN does not require input variables to be independent with each 

other, which could save substantial effort in data correlation analysis.   

 

Data Requirement 
 
To model an ANN, a large amount of data would be required.  A general “rule of 

thumb” is that the number of exemples (training data records) should be at least 

three times of the number of network weights. The number of network weights 

can be adjusted via a number of approaches, such as reducing the number of 

hidden layers, reducing the number of processing elements (PEs) in each hidden 

layer, applying weight decay when using full synapse between layers, or 

choosing arbitrary synapse over full synapse. Currently, the amount of data that 

is usable in ANN modeling is relatively small. Therefore, reducing the number of 

weights in the network was used to satisfy the aforementioned data ratio.  In 
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addition, due to the limited data amount, the number of hidden layers is restricted 

to one.   

 

However, the research team believes that with new APC data being added to the 

central database everyday, the data amount requirement can be satisfied 

eventually without applying those weight reduction measures.   

 

Pre-Processing 
 
Input and Output 
 
The studied APC data provided by NJ Transit included a total of four different 

patterns on both service directions (inbound and outbound). The selected 

patterns are WMIAP, PAIWM, WM-AP, and PA-WM as described in Section 4.1.  

For each direction, there are 12 and 14 time points for patterns (PA-WM, WM-

AP) and (PAIWM, WMIAP) respectively.  Therefore, the prediction of bus arrival 

times for the four patterns need to be modeled separately.   

 

Among those variables that may contribute to the variation of bus travel time 

between time points, the research team selected the following as the weight 

parameters: time of the day, day of the week, and weather (e.g., precipitation).   

 

The output of the model will be the travel times on each segment of the route, 

i.e., between two consecutive time points. Then the arrival time can be calculated 

based on the departure time from previous time point and the estimated travel 

time to the subject time point.   

 

Data Format 
 
NeuroSolutions requires that all input files be saved as a coma delimited text file.  

Each trip in the data file would occupy one row in which travel time between time 

points, as well as time of the day, day of the week, and weather information are 

selected.  All trips belonging to the same pattern for each direction are located in 
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one input file.  For the purpose of calculation convenience, the travel time has 

been converted to the number of seconds.  A sample data file is shown in Figure 

13.   
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Figure 13 Sample Data File 

deling Procedure 

 this study, the NeuralExpert tool of NeuroSolutions was used to develop 

Ns.  It is a wizard that asks user questions and automatically builds the best 

twork and configures the parameters and probes for the problem.  The general 

ocedure is outlined as follows. 

ep 1: Identify the problem type as function approximation. 

ep 2: Identify the input file. 

ep 3: Specify input variables (e.g., time of the day, day of the week, and 

precipitation). 

ep 4: Tag symbolic inputs.  Due to the nature of the input variables in the study 

as symbolic rather than numerical values that is continuous, it is 

necessary to specify that all three variables are symbolic.   

ep 5: Identify the file that contains data to model.  This is the same as the input 

file based on the way we process data.  Therefore, choose “use input file 

for desired file” and “shuffle data files” to randomize the file order.   

ep 6: Select the columns to model, i.e., select those travel times, which are 

labeled, from TT1 to TT11 (for the patterns with 12 time points) or up to 

TT13 (for the patterns with 14 time points).   

ep 7: Choose a level of generalization protection.  This is to help the ANN 

perform better on new data in the training process.  It is implemented by 

setting aside data used to determine when to stop training the ANN 
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(called cross validation data set).  Normal level with 20 percent cross 

validation data from the input file was chosen.   

Step 8: Choose “out of sample testing”, i.e., set aside certain percentage of 

samples from the input file to test the ANN after training and cross 

validation.  Due to limited size of samples, 3 percent was specified.   

Step 9: Specify level of genetic optimization (e.g., “None”).  Performing genetic 

optimization involves using large amount of data. 

Step 10: Choose the level of neural network complexity as “Low”.  This will 

establish an ANN with one hidden layer, which is preferred due to limited 

size of training data.   

 

The wizard is likely to send a warning for the shortage of data afterwards.  This 

problem can be dealt with additional adjustments as follows.  The purpose of this 

procedure is to reduce the number of connections in the network, aiming to 

reduce the number of network weights.   

 

Step 1: Check the weight decay box on the momentum inspectors associated 

with the synapses between the input and hidden layers and between the 

hidden and output layers.  The default weight decay rate is 0.01.   

Step 2: Add weight inspectors on these two synapses and show the weights 

during the training process. 

Step 3: Train the ANN using different weight decay rate, and save the one with 

the best MSEs. 

Step 4: Based on weights in the weight inspector, change full synapse to 

arbitrary synapse.  Connect the PEs with input and output variables if the 

weight is high in absolute value.   

Step 5: Calculate the number of network weights by adding number of weights 

from synapses between input and hidden layer and between hidden and 

output layer, and weights from the hidden layer.  The number of weights 

for the synapses can be found from the Soma tab of the synapse 

inspector, while that for the hidden layer can be found from the Soma tab 
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of the TahnAxon inspector.  The total number of training samples should 

be at least 3 times of the number of network weights.   

 
ANN Models 
 
Four ANN models were established in this study to predict bus travel time by 

pattern and by direction, as shown in Table 11.   

 

Table 11 Developed ANN Models 
 
 Inbound Outbound 

Patterns (w/ 12 time points) Model I (for WM-AP) Model II (for PA-WM) 

Patterns (w/ 14 time points) Model III (for WMIAP) Model IV (for PAIWM) 

 
Model I 
 
The network architecture shown in Figure 14 presents the elements in the ANN 

that have been addressed on the documentation of NeuroSolutions.   

 

 
 axon 
 

Figure 14 Network Architecture of Model I 
 
The axon at the far left side is the input layer.  It is connected with a hidden layer 

through a TahnAxon type transfer function and hidden synapse with 11 weights.  

There are 3 PEs in the hidden layer, which is connected to the output layer 

through output synapse with 11 weights.  Therefore the total number of weights 

for this network is 25.  The total number of data samples is 81, while 20 percent 

of these (16 samples) were used in cross validation, and 2 samples were used in 

testing.  The training data file then has 63 samples.  This number of samples is 

low compared to the recommended sample size (3 times of the total network 

    59



weights).  However, in order to evaluate all input variables, the network weights 

cannot be further reduced.   

 

After the network has been established, multiple trainings were conducted and 

the best one (with the minimum MSE) was saved. Figure 15 shows the learning 

curve of the training process.  The horizontal axis represents the number of 

epochs (i.e., the number of times that training data is presented to the network), 

while the vertical axis represents the MSE and the horizontal axis represents the 

number of iterations.  It can be observed that the learning curve is rather smooth 

which indicates that the model performance is steadily improving even though 

very slowly after 200 iterations.   

 

The network weights as generated by the software are shown in Table 12 as the 

output of the sensitivity analysis.  Since all input variables in the study are 

symbolic type variables, they were split into multiple subvariables in the network.   

 

 

 
 

Figure 15 Learning Curves of Model I 
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Table 12 Values of Parameters in Model I 
 
Input Variable Weight Cumulative Weight 

Monday 0.14 
Tuesday 4.33 

Wednesday 1.91 
Thursday 1.75 

Day of the 
Week 

Friday 4.18 

12.32 

MP 5.91 
AP 18.12 
E 15.78 

Time of the 
Day 

LN 41.34 

81.14 

Precipitation – N 3.26 Precipitation Precipitation – Y 3.28 6.54 

 
To evaluate the impact of the each variable, one can add the weights of all 

subvariables that belong to one original variable.  For example, one should add 

weights for all days of a week to obtain the impact of day of the week on bus 

travel times.  The cumulative significance of each variable is also shown in Table 

12, from which one can observe that “time of the day” is the most significant 

factor in affecting bus travel times.  Compared to “time of the day”, “day of the 

week” and “precipitation” do not have such significant impact.   

 

 

Model II 

 

The network architecture for Model II is similar to that of Model I as shown in 

Figure 14. The total number of data samples is 112, with which 22 samples (20 

percent) were used for cross validation and 3 samples were used for testing.  

This leaves the number of training samples to be 89.  The total number of 

network weights is 25, with 11, 3, and 11 weights at the hidden synapse, hidden 

layer, and output synapse, respectively.  Therefore the training sample size can 

satisfy the recommended level.   

 

The learning curve is shown in Figure 16, and the results of the sensitivity 

analysis are shown in Table 13. Similar to Model I, the training process seems to 
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be smooth, and “time of the day” is the most significant one among all three input 

variables.   

 

 
 

Figure 16  Learning Curves of Model II 
 
 

Table 13 Values of Parameters in Model II 
 
Input Variable Weight Cumulative Weight 

Monday 2.22 
Tuesday 2.88 

Wednesday 0.33 
Thursday 4.64 

Day of the 
Week 

Friday 0.63 

10.70 

EM 18.05 
MP 22.23 
AP 18.32 

Time of the 
Day 

E 22.19 

80.79 

Precipitation – N 4.25 Precipitation Precipitation – Y 4.26 8.51 

 
 
Model III 
 
Model III was developed for the inbound pattern with 14 time points traveling 

inbound (WMIAP). Its network architecture remains similar to that of Models I and 

II, as shown in Figure 14.  
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The total number of data samples is 135, among them 27 samples (20 percent) 

were used for cross validation and 4 samples were used for testing.  This leaves 

the number of training samples to be 104.  The total number of network weights 

is 29, with 13, 3, and 13 weights at the hidden synapse, hidden layer, and output 

synapse, respectively.  Thus, the training sample size can satisfy the 

recommended level.   

 

The learning curve for Model III is shown in Figure 17, and the results of the 

sensitivity analysis is shown in Table 14.  Similar to Models I and II, the training 

process seems to be smooth, and “time of the day” is the most significant one 

among all three input variables.   

 
 

 
 

Figure 17 Learning Curves of Model III 
 
 
 
 
 
 

    63



Table 14 Values of Parameters in Model III 
 
Input Variable Weight Cumulative Weight 

Monday 0.01 
Tuesday 0.75 

Wednesday 2.61 
Thursday 0.08 

Day of the 
Week 

Friday 1.46 

4.90 

EM 22.50 
LM 4.55 
MD 10.73 
EA 15.02 
E 13.34 

Time of the 
Day 

LN 25.34 

91.49 

Precipitation – N 1.80 Precipitation Precipitation – Y 1.81 3.61 

 
 
Model IV 
 
Model IV was developed for the outbound pattern serving 14 time points 

(PAIWM).  Its network architecture remains similar to that of models I, II, and III, 

as shown in Figure 14.   

 

The total number of data samples is 121, among them 24 samples (20 percent) 

were used for cross validation and 4 samples were used for testing.  This leaves 

the number of training samples to be 93.  The total number of network weights is 

29, with 13, 3, and 13 weights at the hidden synapse, hidden layer, and output 

synapse, respectively. Therefore, the training sample size can satisfy the 

recommended level.   

 

The learning curve for Model IV is shown in Figure 18, and the results of the 

sensitivity analysis is shown in Table 15. Similar to Models I, II, and III, the 

training process seems to be smooth, and “time of the day” is the most significant 

one among all three input variables.   
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Figure 18 Learning Curves of Model IV 
 

Table 15 Values of Parameters in Model IV 
 
Input Variable Weight Cumulative Weight 

Monday 2.94 
Tuesday 2.12 

Wednesday 0.76 
Thursday 1.75 

Day of the 
Week 

Friday 2.84 

10.41 

EM 26.04 
LM 3.89 
MD 1.57 
EA 25.49 
AP 14.10 

Time of the 
Day 

E 16.94 

88.02 

Precipitation – N 0.78 Precipitation Precipitation – Y 0.78 1.57 

 
 
Kalman Filtering Algorithm 
 
The ANNs developed in this study are based on historic data pool of bus trips.  

New data are added into that pool regularly.  Training can then be conducted 

afterwards to ensure the ANN models up to date. However, this method does not 

have the dynamic feature to adapt to incident (non-recurring) condition.   
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A dynamic procedure was developed based on the Kalman filtering algorithm.  It 

enables online adjustment of arrival time estimates for a particular trip based on 

its available travel time information up to the moment the estimation is 

conducted.   

 
Let t  denote the travel time from time point  to the given destination (i.e., the 

time point for which arrival time prediction is performed), T  denote the travel 

time from time point  to time point 

k k

1, +kk

k 1+k ,  denote the travel time from origin to 

time point .  Then the travel time from time point 

ks

k 1+k  to the destination t  can 

be calculated as t , and the travel time from origin to time point 

1+k

1,1 ++ − kkkk Tt= 1+k  

can be calculated as 1, +1+ += kk s kkTs .   

 

If  denotes the observed travel time from origin to time point , then .  

Let , the Kalman filter can be formulated as 

kz

x

k kk sz =

( T
kkk st= )

kkkkk wAxx ++Φ=+1         (4) 

kkkk vxHz +=          (5) 

in which, 
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
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
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=
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1,

1,

kk

kk
k T

T
A

kw  and  are white noises associated with the transition process and 

measurement, respectively.  They are assumed to have zero mean and 

variances of Q  and , respectively.   

kv

k kR

 

The filtering procedure is outlined as follows.   
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Step 1: Initialize state variables.  Set ( )Tstx 000= , in which  is the estimated 

total travel time from the origin to the destination, and  is set to be 0 

based on its definition.   

0t

0s

Step 2: Initialize covariance  when 0P 0=k .   

Step 3: State variable extrapolation.   

    (6) 

in which T  can be obtained from estimates based on historical data.   
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Step 4: Covariance extrapolation.   

       (7) k
T
kkkk QPP +ΦΦ= ++

−
+ 111

Step 5: Kalman gain computation. 

     (8) ( ) 1
1111111

−

++
−
+++

−
++ += k

T
kkk

T
kkk RHPHHPK

Step 6: State variable update. 

( )−
++++

−
++ −+= 111111 ˆˆˆ kkkkkk xHzKxx

1+

      (9) 

Stop, if time point k  is the destination. Otherwise, go to Step 7.   

Step 7: Covariance update. 

       (10) 

Go to Step 3.   

−
+++

−
++ −= 11111 kkkkk PHKPP
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PREDICTION EVALUATION AND ANYALYSIS 

 

The prediction models developed in this study has two major elements: (1) travel 

time prediction using the developed ANN that was trained based on historical bus 

trip data collected by APC devices; and (2) dynamic adjustment to the time-till-

arrival at downstream time points using the developed Kalman filter algorithm.   

 

Performance of Artificial Neural Networks (ANNs) 
 

The performance of the developed ANN model was tested using data that were 

never “seen” by the ANN. That is, the test data were not used to train or validate 

the ANN.  For each ANN model developed in this study, 3 percent of the 

collected data were set aside as testing samples.  The performance of the ANN 

model on the test data was evaluated using the minimum square error (MSE) 

measurement.  Table 16 shows the MSEs for training, cross validation, and 

testing of each model.   

 

Table 16 Performance Measures for ANN Models 
 

Model Training MSE Cross Validation MSE Test MSE 

I 0.0908 0.0847 0.0421 

II 0.0987 0.0712 0.1196 

III 0.0934 0.1182 0.0724 

IV 0.0985 0.0891 0.1220 

 

 

Generally, the test MSE is expected to be larger than the MSE for either training 

or cross validation since the test data was new to the model. However, in several 

occasions (e.g., Models I and III) shown in table 16, the test MSE appears to be 

smaller.  This might be caused by a small test sample size that makes the testing 
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result relatively volatile. However, with the increase of testing samples in the data 

pool, the model performance shall be more stable.   

 

During the process of ANN model development in this study, only a small amount 

of samples (3 percent) were applied as testing data. The recommended minimum 

ratio of training samples to network weights that is 3, was not sufficient even with 

such a small data was selected for testing the ANN. To evaluate the performance 

of the model, all data were used in the test process. The variation between 

scheduled and actual travel times and the variation between the predicted (ANN 

output) and actual travel times were compared. 

 

Figures 19 through 26 show the spatial and temporal variations of prediction 

errors with all four ANN models.  The average errors in these figures are 

calculated using Eqs. 11 and 12.   

a

aANN
ANN t

tte −
=          (11) 

Accordingly, the error between the scheduled and actual travel times can be 

found as: 

a

aS
S t

tt
e

−
=           (12) 

where 
 
eANN: Prediction error from the ANN 

tANN: Predicted travel time from the ANN 

eS: Prediction error of scheduled travel time 

tS: Scheduled travel time from the timetable 

ta: Actual travel time 
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TP # Description 

1 WOODBRIDGE CENTER MALL 

2 NJT METROPARK STATION 

3 INMAN AVE & WOOD AVE 

4 W INMAN AVE & ST GEORGES AVE 

5 MAIN ST & E MILTON AVE 

6 SAINT GEORGES AVE & WOOD AVE

7 E JERSEY ST & BROAD ST 

8 NWK AIRPORT TERM A 

9 NWK AIRPORT TERM B 

10 NWK AIRPORT TERM C 

11 BROAD ST & EDISON PL 

12 PENN STATION BUS LANES 

 
 
 
 
 
 

Figure 19 Predicted (Model I) vs. Scheduled Errors for TP-to-TP Travel 
Times 
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Figure 20 Predicted (Model I) vs. Scheduled Errors for  

Travel Times in Different Periods 
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TP # Description 

1 PENN STATION BUS LANES 

2 BROAD ST & BRANFORD PL 

3 NWK AIRPORT TERM A 

4 NWK AIRPORT TERM B 

5 NWK AIRPORT TERM C 

6 BROAD ST & W JERSEY ST 

7 SAINT GEORGES AVE & WOOD AVE

8 IRVING ST & BROAD ST 

9 W INMAN AVE & ST GEORGES AVE 

10 INMAN AVE & WOOD AVE 

11 NJT METROPARK STATION 

12 WOODBRIDGE CENTER MALL 
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Figure 21 Predicted (Model II) vs. Scheduled Errors for TP-to-TP Travel 
Times 
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Figure 22 Predicted (Model II) vs. Scheduled Errors for  
Travel Times in Different Periods 
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TP # Description 

1 WOODBRIDGE CENTER MALL 

2 NJT METROPARK STATION 

3 INMAN AVE & WOOD AVE 

4 W INMAN AVE & ST GEORGES AVE 

5 MAIN ST & E MILTON AVE 

6 SAINT GEORGES AVE & WOOD AVE 

7 E JERSEY ST & BROAD ST 

8 IKEA 

9 FEDERAL EXPRESS - NEWARK AIRPORT 

10 NWK AIRPORT TERM A 

11 NWK AIRPORT TERM B 

12 NWK AIRPORT TERM C 

13 BROAD ST & EDISON PL 

14 PENN STATION BUS LANES 
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Figure 23 Predicted (Model III) vs. Scheduled Errors for TP-to-TP Travel 
Times 
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Figure 24 Predicted (Model III) vs. Scheduled Errors for  
Travel Times in Different Periods 
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TP # Description 

1 PENN STATION BUS LANES 

2 BROAD ST & BRANFORD PL 

3 NWK AIRPORT TERM A 

4 NWK AIRPORT TERM B 

5 NWK AIRPORT TERM C 

6 FEDERAL EXPRESS - NEWARK AIRPORT

7 IKEA 

8 BROAD ST & W JERSEY ST 

9 SAINT GEORGES AVE & WOOD AVE 

10 IRVING ST & BROAD ST 

11 W INMAN AVE & ST GEORGES AVE 

12 INMAN AVE & WOOD AVE 

13 NJT METROPARK STATION 

14 WOODBRIDGE CENTER MALL 

 3
 

 
 

Figure 25 Predicted (Model IV) vs. Scheduled Errors for TP-to-TP Travel 
Times 
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Figure 26 Predicted (Model IV) vs. Scheduled Errors for  

Travel Times in Different Periods 
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It was observed that, the ANN gave in general a better estimate of the travel time 

than that from the timetable since the average error of ANNs in most cases is 

less than that from the timetable. However, in a few cases, the timetable 

estimates were better than that from the ANNs. This might be attributable to two 

facts: (1) the limited available data for ANN model development; and (2) the error 

in original APC data.   

 

Even though the stability of the ANN prediction was affected by the quality and 

quantity of the data, the research team believes that with more new data added 

into the APC database, the performance of the neural network models shall be 

further improved.   

 
 
Performance of the Neural/Dynamic (N/D) Model 
 
In this study, a neural/dynamic (N/D) model that integrates the Kalman filtering 

algorithm and an ANN was developed to dynamically adjust the predicted bus 

arrival time.  Whenever a bus reaches a time point, the travel/arrival time 

prediction from a corresponding ANN can be adjusted according to real time 

information (e.g., the most updated travel/arrival times).   

 

The estimated travel time to each downstream time point was updated when the 

most recent bus arrival information became available. For example, as a bus 

departs from time point 1, the ANN predicts the arrival times from first time point 

to all downstream time points. When the bus arrives at time point 2, the new 

prediction is based on the Kalman filter, while the prediction error at time point 2 

will be taking into consideration.  

 

Following the steps of the Kalman filter (KF) algorithm, travel times from the 

current stop to all downstream time points were predicted. The prediction 

information was then updated when the bus arrived at the next time point. For 

illustration purpose, a trip was selected as an example to analyze the 
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performance of the developed Kalman filter algorithm. This trip was made during 

late night on a Friday under rain. And the prediction results were shown in Table 

17.  

 

When k=1, the Kalman filter algorithm was initialized using baseline estimates of 

travel time between time points. In Table 17, the ANN was used to predict travel 

time as baseline estimate for each destination. With the bus traveled to the next 

TP called TP(k+1), the travel time prediction to all downstream TPs, from 

TP(k+2) to TP12, were adjusted using the actual bus arrival information at 

TP(k+1). This process was repeated until the bus arrived at the final destination, 

TP12.   

 

One should note that since  is defined as the travel time from the origin to the 

current time point k , it reflects the actual travel time and is independent to the 

travel time from the current TP to downstream TPs. Therefore,  were the same 

for all downstream TPs. Each cell in Table 17 represents the estimated state 

variable . For example, 

ks

ks

T
kk tx )ˆ(ˆ = kŝ 3=k  meant that the bus reached TP3. For 

TP10, the predicted travel time from TP3 to TP10, was 3189 seconds, and the 

bus spent 1273 seconds traveling from the origin to TP3, (i.e., s ). It 

meant that the predicted travel time from TP1 to TP10 was 4462(=3189+1273) 

seconds when the bus arrived at TP3.  Thus, a more accurate arrival time of the 

bus of TP10 can be estimated. 

sec1273=ˆ3

 

The predicted vs. actual travel times and their difference from current TP to all 

downstream TPs were summarized in Table 18. It demonstrated that the 

prediction of arrival times to any downstream TP would be more accurate when 

the most updated bus arrival information became available.  
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Table 17 Travel Time Prediction (N/D Model) for One Trip (seconds) 
k TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 

0 670 1326 1793 2025 2605 3393 4058 4342 4516 5324 5588* TP1 
0 0 0 0 0 0 0 0 0 0 0 0** 

 0 656 1123 1355 1936 2723 3388 3673 3846 4654 4918 
TP2 

 671 671 671 671 671 671 671 671 671 671 671 

  0 466 698 1278 2066 2731 3015 3189 3997 4261 
TP3 

  1273 1273 1273 1273 1273 1273 1273 1273 1273 1273 

   0 231 812 1599 2264 2549 2722 3530 3794 
TP4 

   1722 1722 1722 1722 1722 1722 1722 1722 1722 

    -1 580 1367 2032 2317 2490 3298 3562 
TP5 

    1926 1926 1926 1926 1926 1926 1926 1926 

     -1 786 1452 1736 1909 2717 2981 
TP6 

     2479 2479 2479 2479 2479 2479 2479 

      -1 664 949 1122 1930 2194 
TP7 

      3207 3207 3207 3207 3207 3207 

       -1 284   457  1265  1529 
TP8 

       3963 3963 3963 3963 3963 

        -1 173 981 1245 
TP9 

        4221 4221 4221 4221 

         -1 807 1071 
TP10 

         4369 4369 4369 

          -1 263 
TP11 

          5096 5096 

           -1 
TP12 

           5370 

*: t  Travel time from time point k to the given destination k̂

**:      Travel time from origin to time point k.   kŝ

 
To evaluate the performance of the Kalman filter, the arrival time predicted by the 

Kalman filter and ANNs, and their deviations from the actual travel time were 

compared. The predicted travel times from the origin (TP 1) to all downstream 

TPs obtained from the Kalman filter output were compared to the actual travel 

times between the same pairs of origins and destinations (downstream time 

points), and the prediction errors can thus be calculated. The prediction errors of 

the N/D model, ANNs, and timetable could be obtained from Eqs, 11, 12 and 13, 

respectively.   

a

aND
ND t

tt
e

−
=          (13) 

where 

eND: Prediction error of the N/D model 

tND: Predicted travel time from the N/D model 

ta: Actual travel time 
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Table 18 Predicted vs. Actual Bus Travel Times (Seconds) 

Actual 671 1271 1721 1925 2478 3205 3966 4220 4368 5093 5370 
 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 

TP1 670 1326 1793 2025 2605 3393 4058 4342 4516 5324 5588*
 1 -55 -72 -100 -127 -188 -92 -122 -148 -231 -218**

TP2  1327 1794 2026 2607 3394 4059 4343 4517 5325 5589
  -56 -73 -101 -129 -189 -93 -124 -149 -232 -219 

TP3   1739 1971 2552 3339 4004 4288 4462 5270 5534
   -18 -46 -74 -134 -38 -68 -94 -177 -164 

TP4    1953 2534 3321 3986 4270 4444 5252 5516
    -28 -56 -116 -20 -50 -76 -159 -146 

TP5     2506 3293 3958 4243 4416 5224 5488
     -28 -88 8 -23 -48 -131 -118 

TP6      3265 3931 4215 4388 5196 5460
      -60 35 5 -20 -104 -90 

TP7       3872 4156 4329 5137 5401
       94 64 39 -44 -31 

TP8        4246 4420 5228 5492
        -26 -52 -135 -122 

TP9         4394 5202 5466
         -26 -109 -96 

TP10          5176 5440
          -83 -70 

TP11           5359
           10.92

*: Predicted travel time 
**: difference between predicted and actual travel time 
 

Figure 27 indicated the prediction errors of the N/D model and the ANN for a 

particular trip (with 12 time points and made during late night on a Friday under 

rain). It was observed that for most downstream time points, the travel time 

predicted by the N/D model is much closer to the actual travel time than that 

predicted by the ANN. It is worth noting that for this particular trip, the ANN model 

did not provide better estimates of arrival times than the timetable (e.g., time 

points 5, 6, 9-12). Figure 28 shows the prediction errors of the developed N/D 

model, ANN Model III, and a timetable another trip pattern (inbound with 14 TPs).  

This trip was made in early afternoon on a Tuesday without rain. It can be 

observed that the N/D model outcomes were very close to the actual travel times, 

and it outperformed the ANN model. 

 

It showed that the N/D model provided better estimates of bus arrival times at 

downstream TPs than the ANNs and timetable. Although the N/D prediction 
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might be less accurate for example at TP1 to TP2 (Figure 28), in general, the 

prediction errors are less than 5 percent. 
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Figure 27 Prediction Errors from TP1 to All Time Points (Model I) 
 
The deviation between the predicted and actual arrival times, as well as 

scheduled and actual arrival times at each time point were shown in Figures 29 

through 36. It was observed that for each pattern, the deviation between the 

predicted and actual arrival times is smaller than that between the scheduled and 

actual arrival times at all time points. The boundary of the arrival time variations 

between schedule and actual travel times increases as the index of time points 

increases. This might be contributed by the variation of travel times propagated 

as the bus proceeded at further downstream stops. However, for the variations 

between the predicted and actual arrival times at time points was rather stable 

because the N/D model could dynamically predict bus arrival times based on the 

most updated information.  

 
In addition to the evaluation of prediction performance of the variations between 

scheduled and actual travel time and the variation between predicted and actual 

travel times are compared for all the trips (e.g., inbound or outbound with 12 or 
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Figure 28 Prediction Errors from TP 1 to All Time Points (Model III) 

 

14 time points). The prediction accuracy was evaluated by computing the root 

mean squared error (RMSE), which can be obtained from 

 

∑
=

−=
N

i
ii yy

N
RMSE

1

2)ˆ(1

        (14) 

 

where 

  = the number of test samples N

  = actual travel time of sample i  iy

  = ANN estimated travel time of sample  iŷ i

 

The RMSEs are calculated for each bus route segment ( i , defined as the segment 

between time points i  and ).  1+i
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TP # Description 

1 PENN STATION BUS LANES 

2 BROAD ST & BRANFORD PL 

3 NWK AIRPORT TERM A 

4 NWK AIRPORT TERM B 

5 NWK AIRPORT TERM C 

6 FEDERAL EXPRESS - NEWARK AIRPORT

7 IKEA 

8 BROAD ST & W JERSEY ST 

9 SAINT GEORGES AVE & WOOD AVE 

10 IRVING ST & BROAD ST 

11 W INMAN AVE & ST GEORGES AVE 

12 INMAN AVE & WOOD AVE 

13 NJT METROPARK STATION 

14 WOODBRIDGE CENTER MALL 
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Figure 29 Difference between Predicted and 
Actual Arrival Times (Pattern PAIWM) 

 

 

TP # Description 

1 PENN STATION BUS LANES 

2 BROAD ST & BRANFORD PL 

3 NWK AIRPORT TERM A 

4 NWK AIRPORT TERM B 

5 NWK AIRPORT TERM C 

6 FEDERAL EXPRESS - NEWARK AIRPORT 

7 IKEA 

8 BROAD ST & W JERSEY ST 

9 SAINT GEORGES AVE & WOOD AVE 

10 IRVING ST & BROAD ST 

11 W INMAN AVE & ST GEORGES AVE 

12 INMAN AVE & WOOD AVE 

13 NJT METROPARK STATION 

14 WOODBRIDGE CENTER MALL 
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Figure 30 Difference between Scheduled and  
Actual Arrival Times (Pattern PAIWM) 
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TP # Description 

1 WOODBRIDGE CENTER MALL 

2 NJT METROPARK STATION 

3 INMAN AVE & WOOD AVE 

4 W INMAN AVE & ST GEORGES AVE 

5 MAIN ST & E MILTON AVE 

6 SAINT GEORGES AVE & WOOD AVE 

7 E JERSEY ST & BROAD ST 

8 IKEA 

9 FEDERAL EXPRESS - NEWARK AIRPORT

10 NWK AIRPORT TERM A 

11 NWK AIRPORT TERM B 

12 NWK AIRPORT TERM C 

13 BROAD ST & EDISON PL 

14 PENN STATION BUS LANES 

 

 

Figure 31 Difference between Predicted and  
Actual Arrival Times (Pattern WMIAP) 

 

 

TP # Description 

1 WOODBRIDGE CENTER MALL 

2 NJT METROPARK STATION 

3 INMAN AVE & WOOD AVE 

4 W INMAN AVE & ST GEORGES AVE 

5 MAIN ST & E MILTON AVE 

6 SAINT GEORGES AVE & WOOD AVE 

7 E JERSEY ST & BROAD ST 

8 IKEA 

9 FEDERAL EXPRESS - NEWARK AIRPORT 

10 NWK AIRPORT TERM A 

11 NWK AIRPORT TERM B 

12 NWK AIRPORT TERM C 

13 BROAD ST & EDISON PL 

14 PENN STATION BUS LANES 

 

 

 
-30

-25

-20

-15

-10

-5

0

5

10

15

20
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time Point

A
rr

iv
al

 T
im

e 
D

ev
ia

tio
n 

(m
in

ut
es

)

Figure 32 Difference between Scheduled and  
Actual Arrival Times (Pattern WMIAP) 
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TP # Description 

1 WOODBRIDGE CENTER MALL 

2 NJT METROPARK STATION 

3 INMAN AVE & WOOD AVE 

4 W INMAN AVE & ST GEORGES AVE 

5 MAIN ST & E MILTON AVE 

6 SAINT GEORGES AVE & WOOD AVE

7 E JERSEY ST & BROAD ST 

8 NWK AIRPORT TERM A 

9 NWK AIRPORT TERM B 

10 NWK AIRPORT TERM C 

11 BROAD ST & EDISON PL 

12 PENN STATION BUS LANES 

 

 

 

Figure 33 Difference between Predicted and  
Actual Arrival Times (Pattern WM-AP) 
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TP # Description 

1 WOODBRIDGE CENTER MALL 

2 NJT METROPARK STATION 

3 INMAN AVE & WOOD AVE 

4 W INMAN AVE & ST GEORGES AVE 

5 MAIN ST & E MILTON AVE 

6 SAINT GEORGES AVE & WOOD AVE

7 E JERSEY ST & BROAD ST 

8 NWK AIRPORT TERM A 

9 NWK AIRPORT TERM B 

10 NWK AIRPORT TERM C 

11 BROAD ST & EDISON PL 

12 PENN STATION BUS LANES 

 

 

 

Figure 34 Difference between Scheduled and  
Actual Arrival Times (Pattern WM-AP) 
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TP # Description 

1 PENN STATION BUS LANES 

2 BROAD ST & BRANFORD PL 

3 NWK AIRPORT TERM A 

4 NWK AIRPORT TERM B 

5 NWK AIRPORT TERM C 

6 BROAD ST & W JERSEY ST 

7 SAINT GEORGES AVE & WOOD AVE

8 IRVING ST & BROAD ST 

9 W INMAN AVE & ST GEORGES AVE 

10 INMAN AVE & WOOD AVE 

11 NJT METROPARK STATION 

12 WOODBRIDGE CENTER MALL 

 

 

 

Figure 35 Difference between Predicted and  
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Actual Arrival Times (Pattern PA-WM) 
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TP # Description 

1 PENN STATION BUS LANES 

2 BROAD ST & BRANFORD PL 

3 NWK AIRPORT TERM A 

4 NWK AIRPORT TERM B 

5 NWK AIRPORT TERM C 

6 BROAD ST & W JERSEY ST 

7 SAINT GEORGES AVE & WOOD AVE

8 IRVING ST & BROAD ST 

9 W INMAN AVE & ST GEORGES AVE 

10 INMAN AVE & WOOD AVE 

11 NJT METROPARK STATION 

12 WOODBRIDGE CENTER MALL 

 

 

 

Figure 36 Difference between Scheduled and  
Actual Arrival Times (Pattern PA-WM) 
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Figures 37 through 40 show the performance comparison of the dynamic 

algorithm, the ANN models, and the bus timetable for trips originating from time 

point 1 and arriving at each downstream time points, for studied patterns WM-

AP, PA-WM, WMIAP, and PAIWM, respectively. 

 

It can be observed that from all trips statistic analysis, the N/D model, with a 

lower RMSE, always performs better than the ANN model. This is as expected 

since it has incorporated latest bus arrival information into the prediction. Also, 

the ANN generally give better indication of bus travel times than the timetable, 

except for outbound trips (pattern 1) arriving at time points 7 through12 from time 

point 1. For these particular trips, the maximum difference is less than 60 

seconds.   
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Figure 37 Performance Comparison (Pattern WM-AP) 
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Figure 38 Performance Comparison (Pattern PA-WM) 
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Figure 39 Performance Comparison (Pattern WMIAP) 
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Figure 40 Performance Comparison (Pattern PAIWM) 
 

One can also observe that the RMSEs of the ANN and the schedule show a 

trend of increase as the index of time points increases. This can be attributed to 

the error that propagates when the distance between the origin and destination is 

longer. Promisingly, the N/D model is generally stable with only few small scale 

hikes (e.g., Figures 29 through 32). The incorporation of the latest bus arrival 

information into the N/D model ensures higher prediction accuracy.   
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CHAPTER 8 
 

CONCLUSIONS 
 
 
In this study, the NJ Transit’s APC data were applied in developing bus travel 

time prediction models. Though there were some inconsistent data existing in the 

APC data, the APC unit has demonstrated its effectiveness to collect detailed 

bus operational information (e.g., on/off passenger number, open/close time, 

etc). The data and the process procedure discussed in chapter 5, could generate 

accurate information for model development, (e.g., weather information, arrival 

times at time points, numbers of passengers boarding and alighting at time points 

and between them). The process of the APC data could be further developed as 

a standard procedure in the future study. 

 

Artificial neural networks (ANN) were developed based on historic bus trip 

information for predicting bus arrival times. The developed ANNs have 

demonstrated their capability to model complex nonlinear systems, such as a 

model for bus travel times. In the developed Neural/Dynamic (N/D) model, the 

Kalman filtering algorithm has been integrated with the ANN because of its 

dynamic features to adapt to stochastic conditions in real time. Thus the 

developed N/D model could provide accurate prediction with data collected by 

APC units. 

 

By given trip starting time (time of day), day of week, and weather (precipitation) 

condition, the developed ANN is able to generate estimated travel times between 

each pair of time points along the trip. The estimated travel time was then used 

as input to the developed N/D model to approximate the predicted travel time to a 

particular destination (any downstream time points).   

 

After evaluating the developed bus travel time prediction models, it has shown 

that the ANN models generally gave a better estimation of travel times than that 

posed on the timetable. The N/D model outperformed the ANN models in most 

    87



time points. The results demonstrated that the N/D model can significantly 

improve the error when predicting bus travel times.  

 

It is necessary to note several issues that surfaced during the modeling process.  

The primary concern has been the insufficient data in training neural networks.  

In this study, the database only contains trips made during Year 2002.  The 

amount of usable data is quite limited.  Even though measures were taken to 

reduce the number of network weights in the ANN models, the recommended 

data amount to network weights ratio was still insufficient in certain cases.  It is 

desirable to have more data to train and test the ANN models.   

 

Another major concern has been the data quality.  During pre-processing, it was 

found that large discrepancies exist in Year 2002 data.  Such problems include 

inconsistent distance traveled between time points, inaccurate time point 

locations, incomplete trip records, etc. Corrections had to be made manually and 

some trip data had to be abandoned for model development purpose, which 

certainly contributed to the limited data size in the ANN modeling process.   

 

With the increase in the amount of available data, we believe that the 

methodology developed in this study will become a powerful tool for bus arrival 

time prediction.  Future study may explore the inclusion of other variables such 

as passenger counts, dwell times into the ANN model (they were not included 

because of the limited training samples).   
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