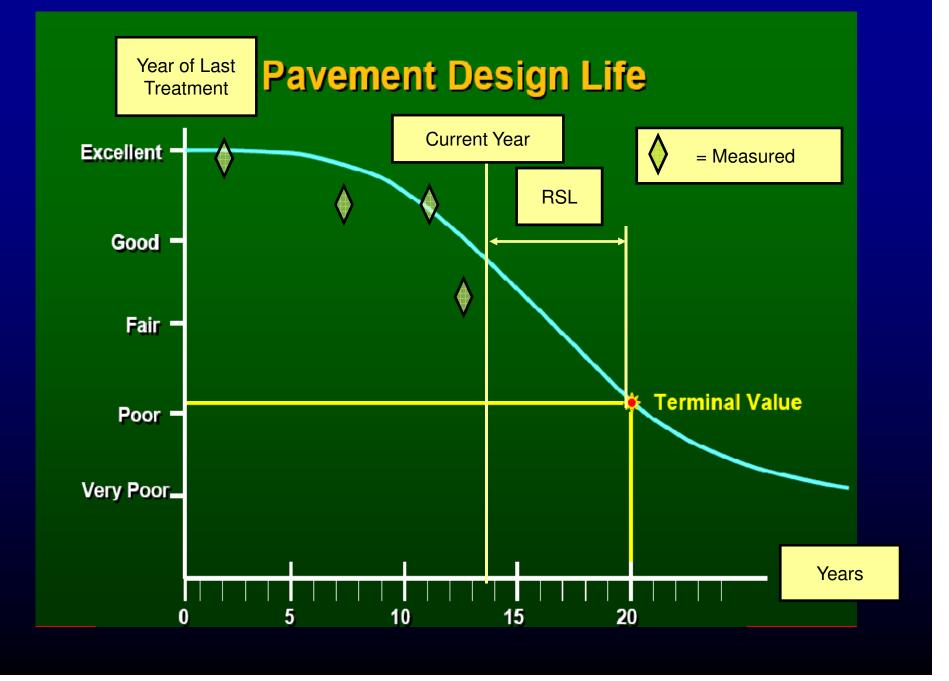
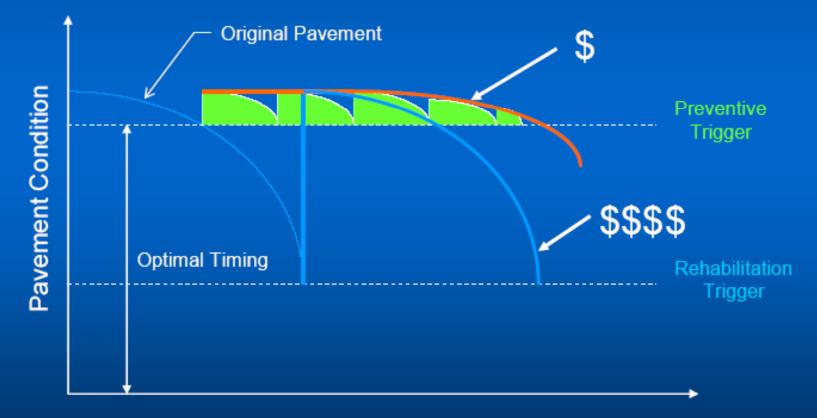

Thin Overlays

Robert W. Sauber Supervising Engineer

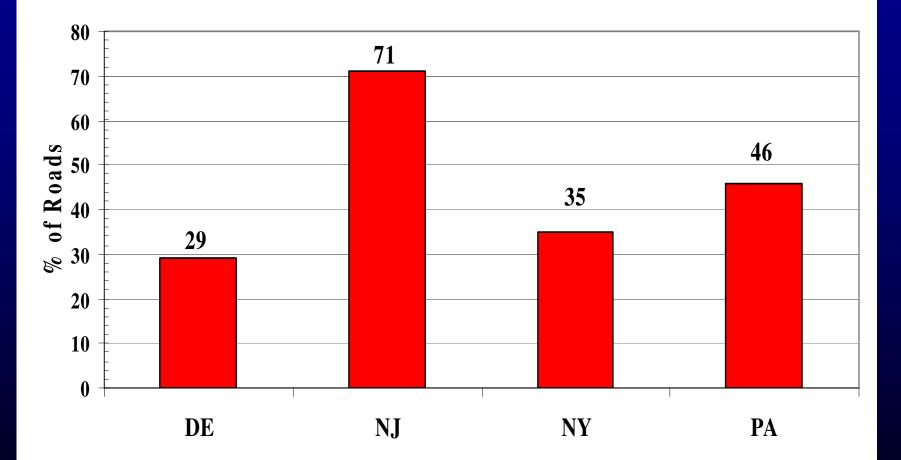
July 2009


PAVEMENT PRESERVATION


- Increasing need to repair and maintain rapidly deteriorating infrastructure leads to:
 - More work zones
 - More public dissatisfaction with work zone traffic congestion, delay and safety
 - Facing the challenge of balancing essential roadway repairs and maintenance with mobility and safety concerns
 - Non-traditional construction methods to balance essential roadway repairs and maintenance with mobility and safety

Presentation Outline

- Focus shift from pavement rehabilitation to pavement preservation
- Public may wonder why we are fixing good pavements, outreach needed
- Types of thin HMA surfacings
 - Dense-graded systems (HPTO)
 - Open-graded systems (OGFC & AR-OGFC)
 - Gap-graded systems (SMA & SMAR)
 - Ultra-thin systems (Novachip)



Concept of Pavement Preservation (P²)

Time / Traffic

ASCE's % of Major Roads in Poor or Mediocre Condition

Source: ASCE, 2005 Report Card for America's Infrastructre

Background

- Several treatments are available for pavement preservation including:
 - Cold surface seals
 - Thin HMA overlays
- Purpose of PP treatments include:
 - Extending pavement life
 - Improving ride quality
 - Correcting surface defects
 - Improving safety characteristics

Background (cont.)

- Overlays for pavement preservation

 Thin
 1.5 inch
 HPTO, OGFC, 9.5 SMA, 9.5 HMA
 Ultra thin < 1 inch
 - Microsurfacing, Novachip, Chip Seal

Purpose

- Describe the various thin lift maintenance treatments
- Discuss the materials used, mix design techniques, construction practices, performance history and cost factors for each treatment

Types of Thin HMA Surfacings

- Dense-graded mixes
 - Continuously graded, Superpave
 - High Performance Thin Overlay (HPTO)
- Open-graded mixes
 - 15-22% voids, fibers and polymer or crumb rubber
 - Used to reduce splash and spray, improve high speed friction and reduce tire noise
- Gap-graded systems
 - SMA and SMAR mixes (9.5mm & 12.5mm)
 - Ultra-Thin systems (Novachip)

Microsurfacing Route 29 (Preventive Maintenance)

Microsurfacing

- Also used as an interlayer, can eliminate the need for milling
- Also used to fill raveling longitudinal joints, ruts and/or rumble strips
- Cold mix of asphalt emulsion, latex, cement and aggregate
- Cures by chemical reaction called breaking, requires warmer weather
- Compaction and tack coat optional

Considerations for Each System

- General
- Materials and mix design
- Construction
- Performance
- Cost

Dense-Graded Systems

- Thin HMA General
 - Used throughout USA for maintenance and/or rehabilitation
 - Mixes can be continuously graded or screening mixtures
 - Often used as a compromise between surface treatments and structural HMA

Dense-Graded Systems (cont.)

- Thin HMA material/mix design considerations
 - Quality aggregates
 - Generally use a softer asphalt binder
 - Mix design procedures similar to structural mixes
- Construction considerations
 - Weak areas must be removed and replaced
 - Thin layers cool more quickly; hence, must have sufficient rollers to achieve compaction
 - Layer thickness/aggregate size > 2.5 mm
 - Vibratory rollers may cause damage to overlay

Dense-Graded Systems (cont.)

- Thin HMA Performance information
 - Expected life 5-10 years
 - Varies with traffic, existing pavement condition, environmental conditions and quality of materials and workmanship
- Cost information \$/sy/inch
 - High quality mixes 3 5
 - Lower quality mixes 1.5 2.5

Open-Graded Systems

- OGFC General
 - Used widely in USA for improved wet weather properties and to reduce noise
 - Also referred to as open-graded friction courses or porous pavement
- Materials/mix design considerations
 - Use high quality aggregates
 - Use modified binders polymers, cellulose or crumb rubber (wet process)
 - Mix design procedures consider film thickness, drain down and voids

Open-Graded Systems (cont.)

- OGFC Construction considerations
 - Mix temperatures must be controlled to minimize drain down
 - Paving accomplished with conventional equipment
 - Placement is easy but hand work difficult
 - Seating performed with steel wheeled rollers
 - Importance of tack coat, residual asphalt
 - No coring for air voids

Open-Graded Systems (cont.)

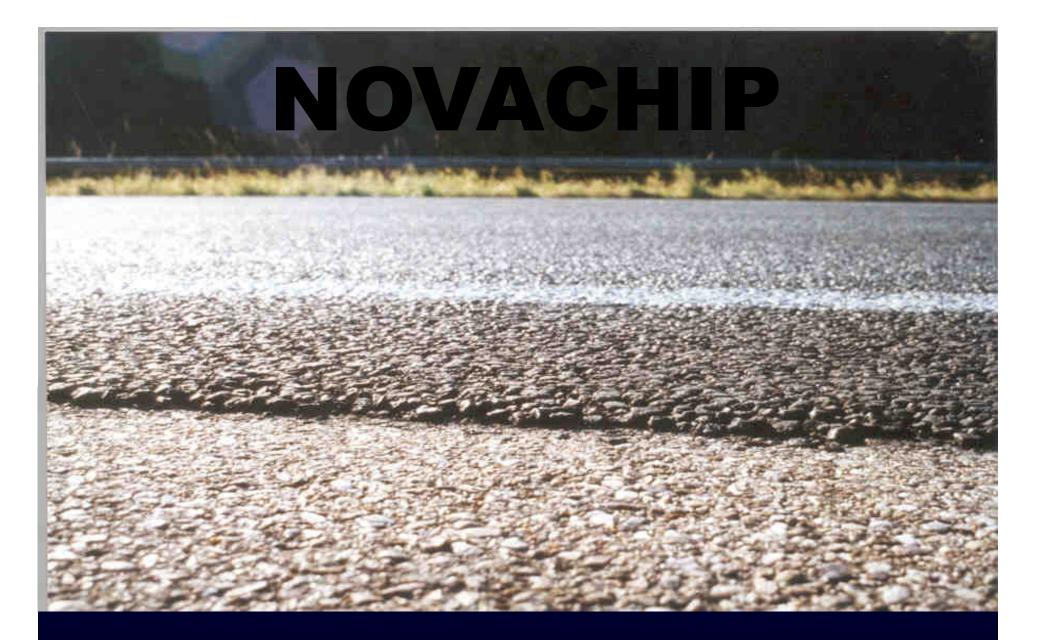
- Performance information
 - Pavement life similar to dense mixes when modified binder is used
 - Polymer/fiber and CRM mixes used in NJ have performed extremely well
 - Clogging of voids can reduce the splash and spray benefits
 - Winter maintenance more difficult

MOGFC-2 Route I-195

Gap-Graded Systems

- SMA General
 - Used in parts of USA as
 - Coarse matrix high binder mixes
 - SMAR mixes
 - SMA mix concept imported from Europe
- Materials/mix design considerations
 - High quality aggregates
 - Modified binders
 - Superpave procedure used to design mixes

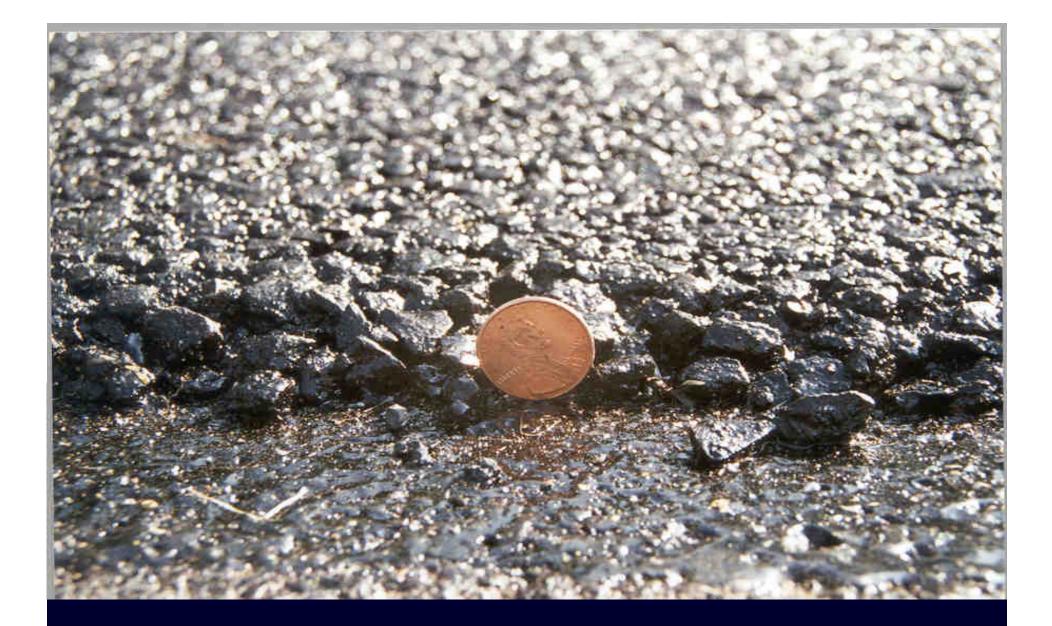
Gap-Graded Systems (cont.)


- Construction considerations
 - Manufactured using conventional equipment
 - Productivity can be impacted because of higher fines content used
 - Aggregate quality and gradation very important - this may effect cost
 - Drain down can also be a problem as in opengraded mixes
 - Hand work and compaction can be difficult

Gap-Graded Systems (cont.)

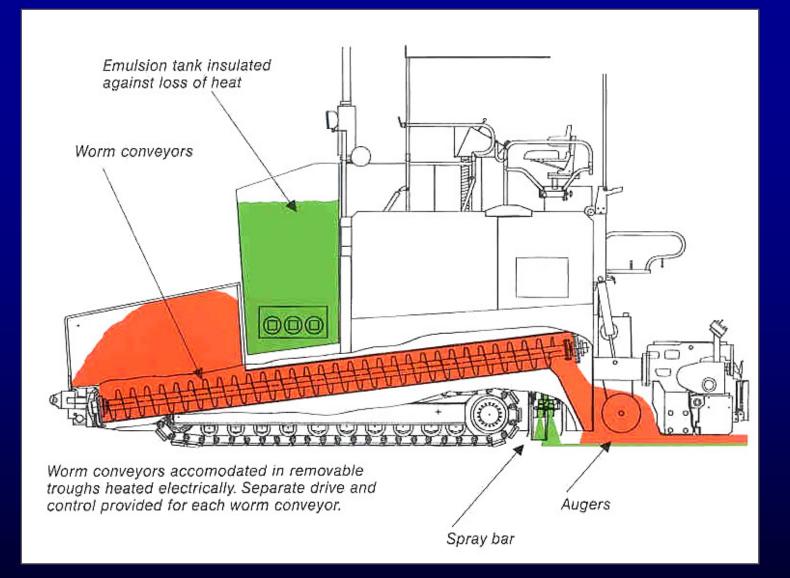
- SMA Performance information
 - Good overall to date
 - Major issue is fat spots caused by segregation and/or drainage
- Cost information (% higher than conventional dense mixes)
 - CMHB 5-10%
 - AR 25-50%
 - SMA 23-70%

Ultra-Thin Systems


- Special thin mix General
 - Requires special equipment to mix or place
 - May require licenses to apply
 - Novachip[®] is an example
- Novachip[®] is a gap-graded HMA placed on a heavy application of a polymer modified membrane

ULTRA-THIN FRICTION COURSE

Gap-Graded Systems (cont.)



NOVACHIP Macro-Texture

The Self-Priming Paver

The Self-Priming Paver

NOVACHIP Ultra-thin Friction Course

Gradation	Depth Min	Yield range *
> 1⁄4 in. (A)	3/8 in.	45 to 65 lbs/sy
≻ 3/8 in. (B)	5/8 in.	55 to 75 lbs/sy
▷ ½ in. (C)	³ ⁄4 in.	65 to 85 lbs/sy

* If proper profile

Ultra-Thin Systems (cont.)

- Special thin mix Materials/mix design considerations
 - Very high quality aggregate; top size can be 4.75, 6.3, 9.5 mm
 - Modified binders polymers
 - No standard mix design procedure
 - Performance tests conducted using wheel tracking equipment
 - Mixes typically placed ³/₄" to 1" thick

Ultra-Thin Systems (cont.)

- Novachip Construction considerations
 - Requires special paver with an integrated spray bar and emulsion tank, higher maintenance
 - Conventional batch or drum plants can be used to produce the HMA
 - Can be opened to traffic quickly
- Performance information
 - First project placed in 1992
 - Over 20,000,000 sy placed since, primarily in Southeast
 - Expected life is 10 years
 - Reduces spray and increases friction
 - Seals the pavement surface

Ultra-Thin Systems (con't)

- Cost information
 - -Highly variable to date
 - Typically 50% greater than densegraded HMA
 - Novachip patent expires summer 2010, cost should go down but more QA will be necessary

Summary

- Thin dense-graded mixes are widely used, primarily for pavement preservation
- Thin open-graded mixes are widely used, primarily for improving wet weather driving conditions and to reduce noise
- Gap-graded mixes containing modified binders have been used by several agencies since the late 1980s
- Ultra-thin systems such as Novachip[®] are being used