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EXPLANATION OF MAP SYMBOLS

CONTACT - Long dashed where approximately located; short dashed where inferred; dotted where concealed,

— **?* queried where questionable.

— 9. FAULT - Long dashed where approximately located; short dashed where inferred; dotted where concealed;
............. queried where questionable.

——v—  Thrust fault - Sawteeth on upper plate.

1T Detachment fault - Identity questionable, location approximate. Hachures on upper plate.

FOLD - Shows trace of axial surface. Long dashed where approximately located; short dashed where inferred;

dotted where concealed.
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OTHER FEATURES

Location of conodont age constraint equivalent to Stonehenge Formation (Beekmantown lower
part (Harris and others, 1995).

Location of conodont age constraint equivalent to Jacksonburg Limestone (Harris and others, 1995).
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INTRODUCTION

The Portland quadrangle covers parts of New Jersey and Pennsylvania that are separated by the south flowing Delaware
River. It lies within the Valley and Ridge Physiographic Province. Only the New Jersey portion of the quadrangle was
geologically mapped. Northeast-trending Kittatinny Mountain dominates the topography of the region. Smaller bedrock
ridges generally parallel the same northeastern trend as Kittatinny Mountain. More northerly trending ridges along the
southern base of Kittatinny Mountain result from Pleistocene glaciation which locally left behind thick blankets of glacial
and meltwater sediment (Witte and Ridge, in preparation). Fluvial drainage in this section of New Jersey trends south-
westward into the Delaware River. The Paulins Kill and Dunnfield Creek are the largest tributaries feeding into the Dela-
ware. Worthington State Forest and the Delaware Water Gap National Recreation Area (DEWA) cover a large area of the
northern part of the quadrangle and offer public access for hiking, camping, hunting and boating. The Appalachian Trail
winds through both Worthington State Forest and DEWA.

STRATIGRAPHY

Qs

Qt

Qsd

Omr

Omb

Silurian Shawangunk Formation and Bloomsburg Red Beds, the only post Taconic sediments in the quadrangle, form a
broad syncline-anticline pair, the Dunnfield Creek syncline and Cherry Valley anticline (Drake and others, 1969). Epstein
and Epstein (1967, 1969) described disharmonic folding between the Martinsburg and the Silurian units on this quadran-
gle. They characterized the boundary separating these rocks as “décollements or zones of décollements”. They suggest
these décollement zones may be discrete surfaces but are more commonly zones of deformation that allow detachment
between layers and or lithologies of different rheology as they react to the tectonic strain and thereby create the dishar-
monic folds. Epstein and Epstein (1967, 1969) model these décollements as generally northwest dipping and having an
overall motion of tops to the northwest. Epstein (2001) described an example of shearing within a two-inch thick clay
gouge at a possible décollement at Yards Creek to the north in the Bushkill quadrangle. Mapping of this boundary here
and to the north would be better described as detachment faults which fade out to the northeast. No exposures of the
Martinsburg-Shawangunk contact have been found in the mapped area to verify the existence of a similar slip surface
as described by Epstein (2001). Shawangunk and Bloomsburg bedding trends mimic those of the northern Martinsburg
belt with a best fit great circle for the Silurian beds as (strike/dip, right hand rule) 335/85 as compared to the Martinsburg
at 330/88 (Figure 3). Trend and plunge of calculated cylindrical best fit is 245/2 for the Silurian units and 240 in the Mar-
tinsburg rocks.

DESCRIPTION OF MAP UNITS
Postglacial Deposits

Stream deposits (Holocene and late Wisconsinan) - Stratified, moderately- to poorly-sorted, yellowish-brown, brown,
and brownish-gray sand, gravel, silt, and minor dark gray clay and dark brown organic material deposited by streams.
Locally bouldery. Can form narrow, sheet like deposits on the floors of modern valleys and higher stream terraces that
flank the course of modern streams. Includes stratified, moderately to poorly sorted sand, gravel, and silt in fan deposits
that lie at the mouth of tributaries. As much as 40 feet thick. Thickest deposits are in the Delaware Valley.

Swamp and bog deposits (Holocene and late Wisconsinan) — Dark brown to black, partially decomposed remains of
mosses, sedges, trees and other plants, and muck underlain by laminated organic-rich silt and clay. Accumulated in ket-
tles, shallow postglacial lakes, glacially scoured bedrock basins, poorly-drained areas in uplands, in abandoned stream
channels on alluvial plains, and hollows in ground moraine. Locally interbedded with alluvium and thin colluvium. In areas
underlain by limestone and dolomite may contain calcareous marl. As much as 25 feet thick.

Glacial Deposits

Till (late Wisconsinan) — Yellowish-, reddish-, olive-brown, and grayish brown sandy, sandy-silty, and clayey-silty diamic-
ton consisting of a very poorly sorted matrix of sand, silt, and clay and containing 5 to 35 percent pebbles, cobbles, and
boulders. Deposited directly by or from glacial ice. Till is widespread, generally less than 20 feet thick and lies on bedrock.
In areas of thin till, which are mapped here as bedrock formation, bedrock outcrops are abundant and most of these ex-
hibit signs of glacial erosion. Thicker till forms aprons on the north facing hillslopes, drumlins, and ground and recessional
moraine. In places overlain by thin, noncompact, poorly sorted silty sand to sand containing as much as 35 percent peb-
bles, cobbles, boulders, and interlayered with lenses of sorted sand, gravel, and silt. May be as much as 100 feet thick.

Meltwater deposits (late Wisconsinan) - Stratified, well- to moderately-sorted sand, yellowish-brown, brown, and brown-
ish-gray boulder-cobble to pebble gravel, pebbly sand and minor silt deposited by meltwater streams in valleys as out-
wash plains and fans and meltwater terraces and small glacial lakes as deltaic and lacustrine-fan deposits. In places
includes light to dark gray, parallel-laminated, irregularly to rhythmically-bedded silt, clay, and very-fine sand; and minor
cross-laminated silt, fine sand, and minor clay deposited on the floor of glacial lakes. As much as 150 feet thick.

Bedrock Formations

Bloomsburg Red Beds (Upper and Middle Silurian) - Pale red to grayish red, grayish red purple, and lesser medium gray
and greenish gray, very fine to coarse grained, cross bedded to planar bedded, thin to thick bedded, partly conglomeratic
sandstone with quartz grains as much as 0.4 in. long and flattened grayish red shale pebbles as much as 0.8 in. long.
Also poorly bedded to laminated, pale red, light brown to moderate brown, and greenish gray shale and siltstone with
scattered green reduction spots and with conspicuous cleavage, partly mud cracked and with scattered ferroan dolomite
concretions about 0.5 in. in diameter. Fining upward cycles with basal channel sandstones are abundant. Minor medium
gray, fine grained, planar bedded sandstone. Lower contact, placed at the base of the lowest red bed, is transitional. In
some places a gray quartzite bed typical of the Shawangunk Formation is found interbedded with red beds less than 20
feet above the base. About 1,500 feet thick.

Shawangunk Formation (Middle and Lower Silurian) - Very light to medium dark gray, and greenish gray to medium
greenish gray, very fine to coarse grained, thin to thick bedded, planar bedded, cross bedded, and ripple bedded, light
gray to light olive gray and moderate yellowish brown to moderate reddish orange and moderate brown weathering, con-
glomeratic quartzite with rounded to subangular quartz and lesser chert pebbles as much as 2.25 in. long, but averaging
about 0.25 in. long, and dark gray to grayish black silty shale pebbles averaging about 2 in. long, cobbles may be as much
as 10 in. long. Medium dark to dark gray, thin to thick bedded siltstone and shale is interbedded with the sandstone and
conglomerate in a zone about 300 feet thick lying about 350 feet above the base of the formation in the western part of
the quadrangle, and thins to about 110 feet and lies about 175 feet above the base in the eastern part. These shales and
siltstones may be the Lizard Creek Member of the Shawangunk Formation separating the Tammany Member above from
the Minsi Member below. These shales and siltstones are found in scattered outcrops along the steep east-facing cliff of
Kittatinny Mountain. The members are not readily mapped in this quadrangle. Shales and siltstones ascribed to the Lizard
Creek Member in eastern Pennsylvania thin northeastward through New Jersey and are represented by thin scattered
intervals in southeastern New York (Epstein, 1993). The lower unconformable contact is covered by talus along the south
slope of Kittatinny Mountain. About 1,400 feet thick

Ramseyburg Member of Martinsburg Formation (Upper Ordovician) — Interbedded medium- to dark-gray to brown-
ish-gray, fine- to medium-grained, thin- to thick-bedded quartzose to graywacke sandstone and siltstone and medium-
to dark-gray, laminated to thin-bedded shale and slate. Unit forms fining upward sequences characterized by basal
cross-bedded sandstone to siltstone grading upward through planar laminated siltstone into shale or slate. Locally, fining
upward cycles may have a lower, medium- to thick-bedded, graded-bedded sandstone overlain by planar laminated
sandstone to siltstone beneath the cross-bedded layer. Complete cycles may be an inch to several feet thick. Basal scour,
sole marks, and soft-sediment deformation of beds are common in quartzose and graywacke sandstones. Lower contact
placed at bottom of lowest thick- to very-thick-bedded graywacke but contact locally grades upwards through a sequence
of dominantly thin-bedded slate and minor thin- to medium-bedded discontinuous and lenticular graywacke beds in the
Bushkill Member. Parris and Cruikshank (1992) correlate unit with Orthograptus ruedemanni zone to lowest part of Clima-
cograptus spiniferus zone of Riva (1969, 1974). Unit is as much as 3,600 feet thick.

Bushkill Member of Martinsburg Formation (Upper Ordovician) — Medium- to medium-dark-gray-weathering, dark-
gray to black, thinly laminated to medium-bedded shale and slate; less abundant medium-gray- to brownish-gray-weath-
ering, dark-gray to black, laminated to thin-bedded, graywacke siltstone. Unit forms fining upward sequences character-
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e ) . . . . floating grains and in very thin lenses. Lower clastic facies contain medium-gray, grayish-red to grayish-green, thin- to Q c
The degree of dolomitization in New Jersey exceeds that in the Reading area of Pennsylvania which later created differ- . ; ) ; f . . =) 8 Omr
; S : . L . medium-bedded mudstone, siltstone, and fine-grained to pebbly sandstone. Fine-grained beds commonly contain minor =
e e 1) e ernce e prtaton o o e isseminated subngur (> Subounde, Medu-ained QU sand an peble-sied chet, Some coase-gran: + o | FEe ] Dom
the Rickenbach Formation ng th flving Epler Formation b .'n ges lent with the Stonehen y Limest ‘;p in beds are cross-stratified. Unit is preserved in geographic low-lying surfaces on the Middle Ordovician unconformity ero- 453.0%0.7 -8 5 Belt Bedding
ietls tyse a:feaGin aF;ad;g ?jlionn:y|van?ac2\(<earﬁ:ﬁganz ??ep%tslj I?QB;IHis'?seai%u;ﬁeers \%95' ;epgtsii t;ngeoﬂl]eress $9§5|) sional surface. North American Midcontinent province conodonts have been identified by Harris and others (1995, p. 6) c g = N Ow
’ ’ ’ ’ ’ ’ . ithi i i i i o© [
Harris and others (1995) list nine sites on the Portland quadrangle where conodonts were collected. Eight sites contain within the carbonate facies. Unit may be as much as 150 feet thick in the quadrangle. % \ g
fossil conodonts that are age equivalent to the Stonehenge Limestone. Age dates of conodonts from the remaining sites .- . . . . . c =
/I Hope S : ) / . Beekmantown Group, upper part (Lower Ordovician) — Light- to medium-gray- to yellowish-gray-weathering, medi- © r
Ve Klippe misniiggﬁésnlehiig:ili?nngsl?c?n?l)t:fc};loaunnggei; i\:etlgI;Slgg?;ftilalr:ngjttaotr(;eitgsl:é%ugrreeg)c->fDdr§||Z>$neilt?zdalt_iztrtwl?n(&ifxsﬂztzgdifllgg um-light to medium-gray, aphanitic to medium-grained, thin- to thick-bedded, locally laminated, slightly fetid dolomite. Lo- @ 5
55' (personal communication, 1997) maintained the original breakdown of the carbonates in New Jersey as sugge-sted by zae!z/, ?hlégthot-gg?yll r::: Ig?;ﬁ;ilzhgafx;xe;te;l%iLTn?_d;zrz;‘tri_d?;k_%':aggfﬁg::éniﬂ;_g;d'%ggignd_eg I:jrg?ks_to;e ?IVCI’(]:;JII": 458.4+0.9 § o
Hobson (1963). Drake and others (1996) divided the Beekmantown Group into an Upper and Lower Part. Both Drake P : . . ) gray } . - gray c c ©
and others (1996) and Markewicz and Dalton (1977) recognize the contact between the Upper and Lower Parts though fresh, medium- to coarse-grained, medium- to thick-bedded, strongly fetid dolomite. Contains pods, lenses and layers & 8 S S
they each use this boundary differently. Drake and others (1996) suggest the boundary lies between the Stonehenge and of dark-gray to black rugose chert, Lowgr contact conformable and 'grades. into t.he fme-grgmed, laminated do!om|te c?f ° S = &
Rickenbach formations while Markewicz and Dalton (1977) and Dalton and others (2014) placed this same boundary Beekmantom{n Group, Iower.part. Contamg conodonts of North Amerlcan. Mldcontlnent province ROSSOdUS. njamtouensm 3 8 E = E
between the Epler and younger Ontelaunee Formation. The current map returns to the subdivision of Drake and others zone to Oepikodus communis zone (Karklins and Repetski, 1989), so unit is Ibexian (Tremadacian to Arenigian) as used 8 3 8 S
. : . . : . . by Sweet and Bergstrom (1986). In map area, unit correlates with the Epler and Rickenbach Dolomite of Drake and others © e]
1996). Drake and Lyttle (1980) placed formations including the Hardyston, Leithsville, Allentown, and formations includ- . ) ) . s —
i(ng Stzanehenge Ricykenb(ack E);fler and Ontelaunee that a?e mappedyhere as Beekmantown Lower and Upper Parts into (1985) and the Ontelaunee Formation of Markewicz and Dalton (1977). Thickness averages about 400 feet but locally is 467.3+1.1 % %’
the Kittatinny Valley Supergroup. Drake and others (1969) original map of parts of the Portland quadrangle predates the as much as 800 feet. g c <
conodont ages of the carbonate rocks, therefore Stonehenge was not identified. Later work by Drake and others (1985) o€bl B - ) . . . s ® unconformit
. o . s \ . eekmantown Group, lower part (Lower Ordovician to Upper Cambrian) — Consists of an upper, middle and lower strati- S y
I"lr:st |del;1t|f|etd the Stor(ljeheygge Limestone within the Portland quadrangle but still used the older stratigraphy over most of graphic subdivisions. Upper sequence is light- to medium-gray- to dark-yellowish-orange-weathering, light-olive-gray to % Carbonate Be
€ carbonate mapped units. dark-gray, fine- to medium-grained, very thin- to medium-bedded locally laminated dolomite. Middle sequence is olive-gray- 8 Bedding
. . . . . . ) ) to light-brown- and dark-yellowish-orange-weathering, medium- to dark-gray, aphanitic to medium-grained, thin-bedded,
The passive margin ends with the approach of an island arc and the Taconic Orogeny which resulted in the closing of the . . . . . . . . : h
Iapet%s Ocean ir?this region. A perir:)F;\eral bulge formed due to thrust loading ce?usgd by the approaching islandgarc on chally well Iammateq d°|°m.'te Wh'C.h grades |pto d|scont|nu.ous lenses (.)f light-gray- to I|ght-blunsh-gray.-weathenng, me- 470.0+1.4
an eastward dipping subduction zone (Jacobi, 1981; Quinlan and Beaumont, 1984). The westward migrating peripheral dium- to dark-gray, fine-grained, thin- to medium-bedded limestone. Limestone has "reticulate’ mottling characterized o o)
bulge uplifted, exposed and eroded the Beekmantown Group carbonates. This erosion accounts for the variable thickness by anastomosing light-olive-gray- to grayish-orange-weathering, silty dolomite laminae surrounding lenses of limestone. 5
of the Beekmantown Group Upper Part and local paleokarst features observed across the quadrangle (Monteverde and ::m&s;?ende drgl?)):“nti)tz ﬁ;ﬂﬁgﬁga?gfgt;zdIglcsiusy' o?g?;gf tgo\m:réaég éztol_?vsg:usrg qdua;](ééocgig?;?sr?? ,222}8;?2?,’“2;'_' <
Herman, 1989). With the passing of the bulge the region subsided with a transgression and deposition of the Sequence um-dark-gray, aphanitic to coarse-grained, thinly-laminated to thick-be&ded slightly fetid dolomite having quartz-sand
at Wantage, a locally preserved unit of reworked residual material of the regolith from the erosional event. Marine waters laminae and ,sparse very thin to thin blaék chert beds. Individual bed thicl’(ness decreases, and floating quartz sand c
gﬁ?gf}ﬁi%ﬁiigﬁ? égigzzzzltﬁn d:{_ t;\r,;\ﬂiﬁ:/etivr\fr:t:g;It':x?er?/glt(;?gZ:trgsLI'Irphe;tc(;);r?tiLhezcsmggﬁlig;{iiﬂ?ﬁ: gé%r;gr]:ionsg; content increases toward lower gradational contact. Contains conodonts of North American Midcontinent province Cordy- g
’ . ) ) ) ) lodus proavus to Rossodus manitouensis zones (Karklins and Repetski, 1989) as used by Sweet and Bergstrom (1986), TR
water depths produced an argillaceous limestone known as the cement-rock facies which marks the change to a foreland s ) ) . Y )
basin. Dc‘))wn splope turbidite s%diments of the Martinsburg Formation show the complete change to a forel?and basin. Two S0 that.umt Is Ibexian (Tremadocian). Entire unit s Stonehenge Limestone of Drake and other; (1985) and Stonehenge -§
members of the Martinsburg, both distal ribbon slates of the Bushkill Member and the more proximal graywacke silts and Eg;m:ggg ;);(;/(I)(I)I;\?er: sggu?et:fersagI?{i:itnhgzrckhe\lgloizzggnDﬂ;Oi? is(L%Z'.\?u)t %%ge;:éf tl;ﬁ:ier and middle sequences as Epler 'g
sands of the Ramseyburg Member, define a change in proximity of the sediment deposited into the basin. A third member, ’ ' ° c
the Penn Argyl Formation, just to the west in Pennsylvania, consists of a thick sequence of slate beds that may cross € . N it . . . . @) Y
the Delaware River into New Jersey at the base of Kittatinny Mountain. Further work is needed on this due to limited ex- a Gggg::::ugr?;rinsltlfgSij-gfae;-ctgnr;?aré?:%q-;gg-:;;autﬁgz%edn:gg?u?-llijgﬁfisr;?elgﬂs:-ggﬁ(fg'gryk?xﬁztgr:ge?ji:::?ér;?:gg- 477.7+1.4 g E Obu
posure. Continued closing of the lapetus Ocean led to the deformational features that mark the Taconic Orogenic event. locally coarse-grained, medium- to very thick-bedded dolomite, local shaly dolomite near the bottom. Floating quartz g
. . . . . . ) . . sand and two series of medium-light- to very light-gray, medium-grained, thin-bedded quartzite and discontinuous dark-
Post-orogenic uplift led to subaerial erosion of the Martinsburg. Erosion and westward flowing rivers from the Taconic ) : . . . ) c
927 Mountair?s creatgd a thick cover of molasse sediment over the egroded Martinsburg. These sedim%nts mapped as the Sha- gray'chert lenses oceur dlrectly. below upper cgntact. Loyver sequence Is m.ed'um' to very-hght.-gray-weatherlng, light- to 'g 8
| 580000 . . ) . o e h ) - medium dark-gray, fine- to medium-grained, thin- to medium-bedded dolomite and shaly dolomite. Weathered exposures o °
i vgantg;gnk1l;c;l'2magon werg tzra.rt1|s porﬁ%(g?n bralclied Ztea ms ar.1d n trin3|lt|or:al n)terl}fln?hcogrt]mental enl\(/ltrr? ntmgr:tCis (dEB?}t’ebm and characterized by alternating light- and dark-gray beds. Ripple marks, oolites, algal stromatolites, cross-beds, edgewise ® E
e e e o0 B
750 000 | for fqhegShawangunk Local chert an)é shale clasts sgggest provenange of some materials o be Lower Paleozoic in oriFg)in contact gradational into Leithsville Formation. Unit contains a trilobite fauna of Dresbachian (early Late Cambrian) age =
. e - ) X . Weller, 1903; Howell, 1945). Approximately 1,800 feet thick.
FEET (NJ) Fluvial deposition continued in the overlying Bloomsburg Red Beds. ( )-App y o€bl
Leithsville Formation (Middle to Lower Cambrian) - Shown in section only - Unit is subdivided into an upper, mid- 485.4+1.9
STRUCTURE dle and lower unit (Markewicz and Dalton, 1977). Upper sequence, rarely exposed, is mottled, medium-light- to me- T
. . . . . dium-dark-gray-weathering, medium- to medium-dark-gray, fine- to medium-grained, medium- to thick-bedded, locally o
The Portland quadrangle shows evidence of both the Taconic and Alleghenian Orogenic events. Previous workers (Mer- . ) . ) . ) . . . .
chant and Teeqt 1954'g0ffield 1967; Herman and others, 1997) who stt?died rocks ir?the northern New Jersey and s(outh- pitted and friable dolomite. Middle sequence is grayish-orange or light- to dark-gray, grayish-red, light-greenish-gray- or c 2 &
£ 6 A s ; ern New York s’uggesied that‘only b;'oad open folds rema;in from the Taconic Orogeny with emergent Taconian faults much da}r.k-greenlsh-gray-weatherlng, gphamtlc to fine-grained, thin- to med{um-be.dded.dolomlte, arlglllaceous dolomllte, dolo- & % £
45,/ E Oy farther to the south. In their model, folds are over steepened to overturned near the Taconic faults. Stress decreased mitic shale, quartz sandstone, siltstone, and shale. Lower sequence is medium-light- to medium-gray-weathering, me- ~489.5 & 5 2 &
= ¢ _ 218 t’ L northward with the overturned folds gradually diminishing to broad open folds. Later Alleghanian deformation developed dium-gray, fine- to medium-grained, thin- to medium-bedded dolomite. Quartz-sand lenses occur near lower gradational S 5 2 < €a
7 / \ﬁaf’ @ $ ‘3; 11,8 rthwest ing thrust faults that 9 b Y tly def 9 dthe T P! fold d 9 Work Drak 196p7 contact with Hardyston Quartzite. Archaeocyathids of Early Cambrian age are present in formation at Franklin, New 8 . [} o
RamSE;SQJ}'g /// 5"'" /;‘%" ' r11867;ve1sggg;%:,?]% bé;in 3\/“0;( inathzusosjt%ﬁr:] I\}llewe\?;z:y HiZhIZichirsm}:?rgviﬁcecg\ésrelsc) T)qel:jegc'ljea-co:iz: Z;Eﬂ r:zp?e mo daei Jersey, suggesting an intraformational disconformity between Middle and Early Cambrian time (Palmer and Rozanov, 2 s
C — d g ’ ~ i i i i i - i i i i . . . . . . .
/ - &&‘ for the Lower Paleozoic and Mesoproterozoic rocks of the region. Drake and others, (1969, 1985) applied the nappe 1967). Unit also contains Hyolithellus micans (Offield, 1967; Markewicz, 1968). Approximately 800 feet. thick regionally. Figure 3. Equal area lower hemisphere spherical projection and rose diagram plots of bedding of the different structural
~— = model to explain the geology of the Portland quadrangle. Revised interpretations of the regional structure were advanced . oy . . ) L L . — i ) o ) ) . regions where Row 1 displays data from the Silurian units; Row 2 is the northern Martinsburg belt; Row 3 is the carbon-
beginning with Herman and Monteverde (1988,1989), then Drake and others (1996), and Herman and others (1997). €h Hardyston Quartzite (Lower Cambrian) - Shown in section only - Medium- to light-gray, fine- to cqars: grained, medium Figure 2. Correlation of Ordovician carbonate units mapped in the New Jersey portion of the ates in the Ackerman anticline and Row 4 is the southern Martinsburg belt and limited carbonates. Orientations both as
to thlgk-pedded quartzite, ark03|.c sandstone anq dolomitic sandstone. Contains Scollthgs linearis (?) and fragments of Portland quadrangle. International Chronostratigraphic Chart including numerical ages in mil- poles to planes on lower hemisphers, equal area projections (1a, 2a, 3a and 4a) and as dip directions on rose diagram
The geology of the Portland quadrangle is dominated by a series of broad anticlines and synclines, small scale overturned m:;{%%’ﬁ%ﬂggiﬁg :Zogg:lclml of Early Cambrian age (Nason, 1891; Weller, 1903). Thickness ranges from 0 feet to a lion years (Ma) is from Cohen and others (2013, updated). Red lines correspond to numerical (1b, 2b, 3b and 4b). Maps to the right in the figure show the areal location where the data was collected. Data density
folds and northwest directed thrust faulting. The broad folds allow a general subdivision characterized by different rock 9 y- age dates. contours use 1% area with a 2% contour interval. N represents the number of readings analyzed in the plot. Bold dots
270 000 types that also follow age. A broad anticline, the Ackerman anticline (Drake and others, 1985) underlain by Cambrian . .. ) . . ) . . . . labeled 1, 2 and 3 represent calculated eigenvectors with 1 being the largest eigenvalue and 3 the smallest. Great circle
FEET (PA N; ’ 7 A’ and Ordovician carbonates, traverses the quad in an east-northeast direction. To the south is a broad syncline, the Stone e :;gtegc;tzcgfe:\:ﬁléw?:rﬁticsi:tc::\;rilol:ssect|on only - composed dominantly of orthogneiss and paragneiss of Grenville age represents cylindrical fold axis of data defined by the plane to circle 3, the smallest eigenvalue. Eigenvalues and fold
45 ) / o 4505000mN Church syncline (Drake and others, 1985) marked by folded Ordovician turbidites of the Martinsburg Formation. The P ¢ ' axis are defined using the cylindrical best fit option in stereonet software described in Allmendinger and others (2013)
25 NSO \ Ny \ [ ‘ N\ A - ( r/ , \( L Qal Paulins Kill Thrust Fault forming the boundary between these two folds continues approximately 30 miles to the northeast and Cardozo and Allmendinger (2013).
40°52'30" ‘ LS - e =~/ L WA W L VL LA : ~ R S : : ‘ - — — = L . L1l 40°52'30" where it ends in the Branchville quadrangle (Drake and Monteverde, 1992). Northeast trending thrust faults occur in the
75°07'30" 1320 000FEET (N) ‘91 ' 2700 000FEET (PAN) 492 5-493 ‘94 ‘95 ‘9% 2'30" 97 2720 000FEET (PA S)498 75°00' southeast corner of the quadrangle. North of the Ackerman anticline a northern belt of Martinsburg turbidite units that
. X * generally dips westward is overlain by Silurian-aged clastic rocks. A single unnamed south-dipping thrust fault lies near
Produced by the United States Geological Survey SCALE 1:24 000 ROAD CLASSIFICATION the boundary between the carbonate-cored Ackerman anticline and the northern Martinsburg belt. Drake and others, Northern Martinsburg Northern Martinsburg Belt Bedding-Cleavage
North American Datum of 1983 (NAD83) (1969,1985) originally interpreted this fault as the west dipping continuation of the Paulins Kill Thrust Fault in the nappe Belt Cleavage Intersection Lineation
X L. Expressway o—— Local Connector ’ N N
World Geodetic System of 1984 (WGS84). Projection and M | ' B KILOMETERS ! 2 structure. However, this thrust fault shows older rocks in the hanging wall over younger rocks of the footwall. This differs N
1 000-meter grid: Universal Transverse Mercator, Zone 18T 12° 26° Secondary Hwy Local Road . . A . . .
10 000-foot ticks: New Jersey Coordinate System of 1983, T22TMILS | gN 1000 500 0 METERS 1000 2000 Ramp WD from the Paullns.Klll Thrust Faullt where younger rocks .|n.the hanging wall were thrust over older rocks in the footwall. This
Pennsylvania Coordinate System of 1983 (south and north zones) 0° 2’ 1 0.5 0 1 - " suggests a possible interpretation of the Ackerman anticline as an older structure that was later cut by the two faults to the
. . . 1MILS VILES ' Interstate Route @ US Route O State Route north and south. Lastly a small isolated klippe and an extension of the Hope Klippe (Drake and Lyttle, 1985), remnants — Drake and orkeand | Datton and .
This map is not a legal document. Boundaries may be of a northwest verging thrust fault along the base of Jenny Jump Mountain (Bayley and others, 1914) to the east in the Drake arkewicz | - Lyttle (1985), rake an alton an This
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genera 't?e or this {";‘p Shca €. (;'l;’:‘ € fands wi mbg?vemme” Es=ss Blairstown quadrangle, lie along the east central part of the quadrangle. They contain the Allentown Dolomite which over (1965,1967) (1977) others (1989) (1996) (2014) s
ontoring wrivate lands. - Cbtain permission betore UTH GRID AND 2016 MAGNETIC NORTH FEET Bedrock geology mapped by D.H. Monteverde and G.C. Herman'in 1985-1988, lies the Bushkill Member of the Martinsburg Formation.
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Roads . U.S. Census Bureau, 2015 - 2016 U.S. National Grid CONTOUR INTERVAL 20 FEET } ) 3 ; gaSLEtII’°“dSb“rg Surficial geology mapped by R.W. Witte and J. Ridge (in preparation) Rocks of the Ackerman anticline display a mixed dip direction as equal exposure occurs on both sides of the axial surface 0o or Obu Oo Obu N
NAMES. ... e e GNIS, 2016 100,000-m Square 1D NORTH AMERICAN VERTICAL DATUM OF 1988 5 F;Stbr;okvme Reviewed by Dr. Jeffery Webber, Stockton University trace. Using the Cylindrical Best Fit app on Stereonet software of Almendinger and others (2013) and Cardozo and All- Ordovician
Hydrography.... ...National Hydrography Dataset, 2013 4 Stroudsburg Digital cartography by D.H. Monteverde, R.S. Pristas and Nicole Malerba mendinger (2013) poles to bedding of the carbonate rocks (Figure 3) within the Ackerman anticline define a fold axis with Oe Oce
gont?jurs_ """""" e e National Ele\;azo: fl.)lat‘:;‘;tz’ ) %g?g v 4 5 | 5 Blairstown o _ a trend and plunge of 1/6 that best fits the great circle of 143/89 of poles to bedding (Figure 3). These trends compare 8 A N N ) CORRELATION OF MAP UNITS
oundaries............ ultiple sources; see metadata file 6 Bangor Submlﬂed in fulfillment <_Jf u.sS. Ge_ologl_cal _Survey Award Number well with the southern Martinsburg belt which has a trend and plunge fold axis of 2/047 and a best fit great circle to the Os Obl ocbl
Wetlands......... FWS National Wetlands Inventory 1977 - 2014 - — 6 7 8 | 7 Belvidere G18AC00178. The views and conclusions contained in this document are those poles of 136.8/88 (Figure 3). The northern Martinsburg belt has a similar trend, but the fold axis plunges to the southwest or er
Grid Zone Designation 8 Washington of the authors and should not be interpreted as necessarily representing the instead of the northeast as do the carbonate belt and southern Martinsburg. This change relates to the near vertical dip of o 1 } Holocene
ADJOINING QUADRANGLES official policies, either expressed or implied, of the U. S. Government. the great circles of the different areas. Only a small change in dip will swing the fold axis to approximately 180 degrees. || | Cambrian Qal Qs
The northern belt has a fold axis of 2/240 on a great circle of 330/88. €a ca oca oca car - bloist t b
- - ' retired, New Jersey Geological and Water Survey Qt Qsd Wgz(;’:s‘?g:n()a €
G eo I og Ic M a p Of th e N ew J e rs ey po rtl o n s Of th e Ordovician Martinsburg rocks have a well-developed cleavage that is better developed in slate beds then the coars- Southern Martinsburg Southern Martinsburg Belt Bedding-Cleavage
er-grained layers. Both the Silurian units, due to a coarser grain size, and the blocky Cambrian and Ordovician carbonate €l €l €l €l €l €l unconformity Belt Cleavage Intersgction Lineation
P I d Q d I W C t N J formations generally lack a cleavage. As deformation generally increases towards the south across the quadrangle an R
rt additional crenulation cleavage associated with thrusting is present in the southeastern part of the map. Cleavage trends Oo - Ontelaunee Formation O€bl - Beekmantown Group, lower part
o a n u a ra n g e J a rre n O u n y’ ew e rs ey differ slightly from the northern to the southern Martinsburg belts with a best fit great circle to the southern belt at 144/86 8?_',5’;ferni‘;r$a;§:maﬁon 2fféicE£;iL§2ﬂit;;"aﬁon Sb
and the northern belt at 158/89 (right hand rule; figure 3). The best fit fold axis for the southern belt is 4/54 and for the Or* - Rickenbach Dolomite O€a - Allentown Dolomite Silurian
northern belt is 1/68. The crenulation cleavage has a best fit great circle of 135/86 and best fit fold axis of 4/045. Os - Stonehenge Formation €a** - Allentown Formation
Ob - Beekmantown Group €a - Allentown Dolomite
Bedding-cleavage intersection lineations appear quite complimentary to each other, both north and south of the Ackerman Obu - Beekmantown Group, upper part €l - Leithsville Formation unconformity
by anticline (Figure 4). Martinsburg rocks display both northeast and southwest plunge directions. The northern Martinsburg Figure 1. Evolution of Paleozoic carbonate rock nomenclature. This map follows the units of Drake and others L
1 belt has similar trends with a higher concentration to the southwest. The southern Martinsburg belt data shows approxi- gf::g)(g'tsh 2‘:;"‘:;:;?”83:2; rzea’;%e)‘ivi?:h"r‘:irs‘i:tlzzscda“n?;ga"nh_%"r%iii'c"iat:i:)”:ig‘aiyogzzséraa‘stgg‘l’izg Time o N =343
DO n a I d H ] M 0 nteve rde a n d G regory C ] H e rma n mately equal trends both northeast and southweast with a similar trend for the crenulation cleavage. indicates the evolving placemént of the Cambrian-Ordovician boundary. Symbols * and ** used to differentiate mr
between different authors using the same formation name.
2021 omb
0j
unconformity Ordovician 2b
Delaware Cherry Valley Dunfield Creek Ackerman Portland Thrust US Interstate Stone Church Honey Run - - i -
A River Anticline Syncline Anticline . Fault Route 80 Syncline Thrust Fault A’ Southern Martinsburg Southern Martinsburg Belt Crenulation Cleavage -Cleavage |
Paulins Belt Crenulation ntersection Lineation
FEET Kill FEET unconformity Cleavage N
1600 - — 1600 Obu
1000 — ) — 1000 O€bl
— Oj Omb Omb  Omr Omb -
7] Omb / Oj \‘ | O €a
i Obu \ Omb < O | N _ b
SEA LEVEL — ' Omb |— SEA LEVEL > Cambrian N=75
N Omr Omr - e
N O<€hl , C
Obu O L €h
1000 ; — 1000
@mr Oj C P } Precambrian
Omb x €a § -
2000 — 2000 3b
O<€bl =
€a B
€l -
3000 __3000 Figure 4. Rows 1 and 2 plot Martinsburg cleavage orientations both as poles to planes on lower hemisphere, equal area projections (1a and 2a) and as dip directions on rose diagram
€h g - (1b and 2b). Plots 1c and 2c plot bedding cleavage intersection lineations. Row 3 presents similar plots as rows 1 and 2 but depicts crenulation cleavage data which was only found in the
=4 B southeast section of the quadrangle. Maps to the right in the figure show the areal location where the data was collected. Data density contours use 1% area with a 2% contour interval. N
4000 /_’4 B 4000 represents the number of readings analyzed in the plot. Circles labeled 1, 2 and 3 represent calculated eigenvectors with 1 being the largest eigenvalue and 3 the smallest. Great circle

represents cylindrical fold axis of data defined by the vector to circle 3, the smallest eigenvalue. Eigenvalues and fold axis are defined using the cylindrical best fit option in stereonet
software described in Allmendinger and others (2013) and Cardozo and Allmendinger (2013).
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