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Figure 2. Correlation of Ordovician carbonate units mapped in the New Jersey portion of the 
Portland quadrangle. International Chronostratigraphic Chart including numerical ages in mil-
lion years (Ma) is from Cohen and others (2013, updated). Red lines correspond to numerical 
age dates.

INTRODUCTION

The Portland quadrangle covers parts of New Jersey and Pennsylvania that are separated by the south flowing Delaware 
River. It lies within the Valley and Ridge Physiographic Province. Only the New Jersey portion of the quadrangle was 
geologically mapped. Northeast-trending Kittatinny Mountain dominates the topography of the region. Smaller bedrock 
ridges generally parallel the same northeastern trend as Kittatinny Mountain. More northerly trending ridges along the 
southern base of Kittatinny Mountain result from Pleistocene glaciation which locally left behind thick blankets of glacial 
and meltwater sediment (Witte and Ridge, in preparation). Fluvial drainage in this section of New Jersey trends south-
westward into the Delaware River. The Paulins Kill and Dunnfield Creek are the largest tributaries feeding into the Dela-
ware. Worthington State Forest and the Delaware Water Gap National Recreation Area (DEWA) cover a large area of the 
northern part of the quadrangle and offer public access for hiking, camping, hunting and boating. The Appalachian Trail 
winds through both Worthington State Forest and DEWA.  

STRATIGRAPHY

Cambrian and Ordovician sediments underlie the topography south of Kittatinny Mountain. These rocks record the de-
velopment of a passive continental margin following the initial breakup of the Supercontinent Rodinia and subsequent 
collision with an island arc complex of the Taconic orogenic event. The breakup of Rodinia led to a transgression and 
development of a broad carbonate passive margin; the Hardyston Quartzite and Leithsville Formation, only represented 
in cross section, mark the initial transgression and basal sedimentation of the carbonate-dominated passive margin. The 
Allentown Dolomite overlies the Leithsville and contains abundant stromatolites, oolites, and quartz sand lenses marking 
a shallow marine carbonate environment. The overlying carbonate deposits of the Beekmantown Group continued the 
development of the passive margin. An unconformity marks the beginning stages of the Taconic Orogeny which closed 
the Iapetus Ocean. Cambro-Ordovician carbonates have been almost completely dolomitized across New Jersey. Initially 
the subdivision of the Beekmantown Group rocks in New Jersey was based on the work of Hobson (1963) in the Reading, 
Pennsylvania area. Hobson correlated his units across eastern Pennsylvania to the Delaware River and just into New Jer-
sey. From his work his basal unit, the Stonehenge Limestone, pinched out to the east toward New Jersey. He mapped his 
next younger unit, the Rickenbach Formation, as the basal section of the Beekmantown Group in New Jersey. It is over-
lain by the Epler Formation which is dominantly a dolomite with limited limestone interbeds. Drake (1965, 1969) followed 
this interpretation on early U.S. Geological Survey geologic maps of quadrangles in the southwestern Valley and Ridge 
and Highlands Physiographic Provinces in New Jersey. Later, Markewicz and Dalton (1977) further subdivided the New 
Jersey Beekmantown Group into various members traceable across northwestern New Jersey. These authors placed the 
few limestone beds found within the Beekmantown into either the Epler Formation or the younger Ontelaunee Formation 
which Hobson (1963) described as an alternating interbedded limestone and dolomite unit. 

The degree of dolomitization in New Jersey exceeds that in the Reading area of Pennsylvania which later created differ-
ent correlations between Hobson’s initial work and later workers (Figure 1). The difference in interpretation arose from the 
introduction of conodont-based ages across this dolomitized terrain. These ages resulted in the New Jersey units mapped 
as the Rickenbach Formation and the overlying Epler Formation being age equivalent with the Stonehenge Limestone in 
its type area in Reading, Pennsylvania (Karlins and Repetski, 1989; Harris and others, 1995; Repetski and others, 1995). 
Harris and others (1995) list nine sites on the Portland quadrangle where conodonts were collected. Eight sites contain 
fossil conodonts that are age equivalent to the Stonehenge Limestone. Age dates of conodonts from the remaining sites 
was distinguished as belonging to the younger Jacksonburg Limestone (Figure 2). Drake and Lyttle (1985) started using 
the name Stonehenge Limestone but changed it to a Formation due to its degree of dolomitization in New Jersey. Dalton 
(personal communication, 1997) maintained the original breakdown of the carbonates in New Jersey as suggested by 
Hobson (1963). Drake and others (1996) divided the Beekmantown Group into an Upper and Lower Part. Both Drake 
and others (1996) and Markewicz and Dalton (1977) recognize the contact between the Upper and Lower Parts though 
they each use this boundary differently. Drake and others (1996) suggest the boundary lies between the Stonehenge and 
Rickenbach formations while Markewicz and Dalton (1977) and Dalton and others (2014) placed this same boundary 
between the Epler and younger Ontelaunee Formation. The current map returns to the subdivision of Drake and others 
(1996). Drake and Lyttle (1980) placed formations including the Hardyston, Leithsville, Allentown, and formations includ-
ing Stonehenge, Rickenback, Epler and Ontelaunee that are mapped here as Beekmantown Lower and Upper Parts into 
the Kittatinny Valley Supergroup. Drake and others (1969) original map of parts of the Portland quadrangle predates the 
conodont ages of the carbonate rocks, therefore Stonehenge was not identified. Later work by Drake and others (1985) 
first identified the Stonehenge Limestone within the Portland quadrangle but still used the older stratigraphy over most of 
the carbonate mapped units.

The passive margin ends with the approach of an island arc and the Taconic Orogeny which resulted in the closing of the 
Iapetus Ocean in this region. A peripheral bulge formed due to thrust loading caused by the approaching island arc on 
an eastward dipping subduction zone (Jacobi, 1981; Quinlan and Beaumont, 1984). The westward migrating peripheral 
bulge uplifted, exposed and eroded the Beekmantown Group carbonates. This erosion accounts for the variable thickness 
of the Beekmantown Group Upper Part and local paleokarst features observed across the quadrangle (Monteverde and 
Herman, 1989). With the passing of the bulge the region subsided with a transgression and deposition of the Sequence 
at Wantage, a locally preserved unit of reworked residual material of the regolith from the erosional event. Marine waters 
deepened leading to the deposition of two facies within the Jacksonburg Limestone. The cement-lime facies, a highly fos-
siliferous limestone, developed under shallow to moderate water depths. The continued bulge migration and deepening 
water depths produced an argillaceous limestone known as the cement-rock facies which marks the change to a foreland 
basin. Down slope turbidite sediments of the Martinsburg Formation show the complete change to a foreland basin. Two 
members of the Martinsburg, both distal ribbon slates of the Bushkill Member and the more proximal graywacke silts and 
sands of the Ramseyburg Member, define a change in proximity of the sediment deposited into the basin. A third member, 
the Penn Argyl Formation, just to the west in Pennsylvania, consists of a thick sequence of slate beds that may cross 
the Delaware River into New Jersey at the base of Kittatinny Mountain. Further work is needed on this due to limited ex-
posure. Continued closing of the Iapetus Ocean led to the deformational features that mark the Taconic Orogenic event. 

Post-orogenic uplift led to subaerial erosion of the Martinsburg. Erosion and westward flowing rivers from the Taconic 
Mountains created a thick cover of molasse sediment over the eroded Martinsburg. These sediments mapped as the Sha-
wangunk Formation were transported in braided steams and in transitional marine-continental environments (Epstein and 
Epstein, 1972). Gray and Zeitler, (1997) analyzed zircons in quartz clasts within the Shawangunk that yielded U/Pb ages 
ranging from 950-1200 Ma (million years) indicating a Grenville orogenic source and therefore a west directed transport 
for the Shawangunk. Local chert and shale clasts suggest provenance of some materials to be Lower Paleozoic in origin. 
Fluvial deposition continued in the overlying Bloomsburg Red Beds.

STRUCTURE

The Portland quadrangle shows evidence of both the Taconic and Alleghenian Orogenic events. Previous workers (Mer-
chant and Teet, 1954; Offield, 1967; Herman and others, 1997) who studied rocks in the northern New Jersey and south-
ern New York suggested that only broad open folds remain from the Taconic Orogeny with emergent Taconian faults much 
farther to the south. In their model, folds are over steepened to overturned near the Taconic faults. Stress decreased 
northward with the overturned folds gradually diminishing to broad open folds. Later Alleghanian deformation developed 
northwest verging thrust faults that subsequently deformed the Taconic folded cover sequence. Workers (Drake, 1967a, 
1967b, 1969) who began work in the southern New Jersey Highlands Province developed a Taconic-aged nappe model 
for the Lower Paleozoic and Mesoproterozoic rocks of the region. Drake and others, (1969, 1985) applied the nappe 
model to explain the geology of the Portland quadrangle. Revised interpretations of the regional structure were advanced 
beginning with Herman and Monteverde (1988,1989), then Drake and others (1996), and Herman and others (1997). 

The geology of the Portland quadrangle is dominated by a series of broad anticlines and synclines, small scale overturned 
folds and northwest directed thrust faulting. The broad folds allow a general subdivision characterized by different rock 
types that also follow age. A broad anticline, the Ackerman anticline (Drake and others, 1985) underlain by Cambrian 
and Ordovician carbonates, traverses the quad in an east-northeast direction. To the south is a broad syncline, the Stone 
Church syncline (Drake and others, 1985) marked by folded Ordovician turbidites of the Martinsburg Formation. The 
Paulins Kill Thrust Fault forming the boundary between these two folds continues approximately 30 miles to the northeast 
where it ends in the Branchville quadrangle (Drake and Monteverde, 1992). Northeast trending thrust faults occur in the 
southeast corner of the quadrangle. North of the Ackerman anticline a northern belt of Martinsburg turbidite units that 
generally dips westward is overlain by Silurian-aged clastic rocks. A single unnamed south-dipping thrust fault lies near 
the boundary between the carbonate-cored Ackerman anticline and the northern Martinsburg belt. Drake and others, 
(1969,1985) originally interpreted this fault as the west dipping continuation of the Paulins Kill Thrust Fault in the nappe 
structure. However, this thrust fault shows older rocks in the hanging wall over younger rocks of the footwall. This differs 
from the Paulins Kill Thrust Fault where younger rocks in the hanging wall were thrust over older rocks in the footwall. This 
suggests a possible interpretation of the Ackerman anticline as an older structure that was later cut by the two faults to the 
north and south. Lastly a small isolated klippe and an extension of the Hope Klippe (Drake and Lyttle, 1985), remnants 
of a northwest verging thrust fault along the base of Jenny Jump Mountain (Bayley and others, 1914) to the east in the 
Blairstown quadrangle, lie along the east central part of the quadrangle. They contain the Allentown Dolomite which over 
lies the Bushkill Member of the Martinsburg Formation.

Rocks of the Ackerman anticline display a mixed dip direction as equal exposure occurs on both sides of the axial surface 
trace. Using the Cylindrical Best Fit app on Stereonet software of Allmendinger and others (2013) and Cardozo and All-
mendinger (2013) poles to bedding of the carbonate rocks (Figure 3) within the Ackerman anticline define a fold axis with 
a trend and plunge of 1/6 that best fits the great circle of 143/89 of poles to bedding (Figure 3). These trends compare 
well with the southern Martinsburg belt which has a trend and plunge fold axis of 2/047 and a best fit great circle to the 
poles of 136.8/88 (Figure 3). The northern Martinsburg belt has a similar trend, but the fold axis plunges to the southwest 
instead of the northeast as do the carbonate belt and southern Martinsburg. This change relates to the near vertical dip of 
the great circles of the different areas. Only a small change in dip will swing the fold axis to approximately 180 degrees. 
The northern belt has a fold axis of 2/240 on a great circle of 330/88. 

Ordovician Martinsburg rocks have a well-developed cleavage that is better developed in slate beds then the coars-
er-grained layers. Both the Silurian units, due to a coarser grain size, and the blocky Cambrian and Ordovician carbonate 
formations generally lack a cleavage. As deformation generally increases towards the south across the quadrangle an 
additional crenulation cleavage associated with thrusting is present in the southeastern part of the map. Cleavage trends 
differ slightly from the northern to the southern Martinsburg belts with a best fit great circle to the southern belt at 144/86 
and the northern belt at 158/89 (right hand rule; figure 3). The best fit fold axis for the southern belt is 4/54 and for the 
northern belt is 1/68. The crenulation cleavage has a best fit great circle of 135/86 and best fit fold axis of 4/045.

Bedding-cleavage intersection lineations appear quite complimentary to each other, both north and south of the Ackerman 
anticline (Figure 4). Martinsburg rocks display both northeast and southwest plunge directions. The northern Martinsburg 
belt has similar trends with a higher concentration to the southwest. The southern Martinsburg belt data shows approxi-
mately equal trends both northeast and southweast with a similar trend for the crenulation cleavage.

Silurian Shawangunk Formation and Bloomsburg Red Beds, the only post Taconic sediments in the quadrangle, form a 
broad syncline-anticline pair, the Dunnfield Creek syncline and Cherry Valley anticline (Drake and others, 1969). Epstein 
and Epstein (1967, 1969) described disharmonic folding between the Martinsburg and the Silurian units on this quadran-
gle. They characterized the boundary separating these rocks as “décollements or zones of décollements”. They suggest 
these décollement zones may be discrete surfaces but are more commonly zones of deformation that allow detachment 
between layers and or lithologies of different rheology as they react to the tectonic strain and thereby create the dishar-
monic folds. Epstein and Epstein (1967, 1969) model these décollements as generally northwest dipping and having an 
overall motion of tops to the northwest. Epstein (2001) described an example of shearing within a two-inch thick clay 
gouge at a possible décollement at Yards Creek to the north in the Bushkill quadrangle. Mapping of this boundary here 
and to the north would be better described as detachment faults which fade out to the northeast.  No exposures of the 
Martinsburg-Shawangunk contact have been found in the mapped area to verify the existence of a similar slip surface 
as described by Epstein (2001). Shawangunk and Bloomsburg bedding trends mimic those of the northern Martinsburg 
belt with a best fit great circle for the Silurian beds as (strike/dip, right hand rule) 335/85 as compared to the Martinsburg 
at 330/88 (Figure 3). Trend and plunge of calculated cylindrical best fit is 245/2 for the Silurian units and 240 in the Mar-
tinsburg rocks.

DESCRIPTION OF MAP UNITS

Postglacial Deposits

Stream deposits (Holocene and late Wisconsinan) - Stratified, moderately- to poorly-sorted, yellowish-brown, brown, 
and brownish-gray sand, gravel, silt, and minor dark gray clay and dark brown organic material deposited by streams. 
Locally bouldery. Can form narrow, sheet like deposits on the floors of modern valleys and higher stream terraces that 
flank the course of modern streams. Includes stratified, moderately to poorly sorted sand, gravel, and silt in fan deposits 
that lie at the mouth of tributaries. As much as 40 feet thick. Thickest deposits are in the Delaware Valley.

Swamp and bog deposits (Holocene and late Wisconsinan) – Dark brown to black, partially decomposed remains of 
mosses, sedges, trees and other plants, and muck underlain by laminated organic-rich silt and clay. Accumulated in ket-
tles, shallow postglacial lakes, glacially scoured bedrock basins, poorly-drained areas in uplands, in abandoned stream 
channels on alluvial plains, and hollows in ground moraine. Locally interbedded with alluvium and thin colluvium. In areas 
underlain by limestone and dolomite may contain calcareous marl. As much as 25 feet thick. 

Glacial Deposits

Till (late Wisconsinan) – Yellowish-, reddish-, olive-brown, and grayish brown sandy, sandy-silty, and clayey-silty diamic-
ton consisting of a very poorly sorted matrix of sand, silt, and clay and containing 5 to 35 percent pebbles, cobbles, and 
boulders. Deposited directly by or from glacial ice. Till is widespread, generally less than 20 feet thick and lies on bedrock. 
In areas of thin till, which are mapped here as bedrock formation, bedrock outcrops are abundant and most of these ex-
hibit signs of glacial erosion. Thicker till forms aprons on the north facing hillslopes, drumlins, and ground and recessional 
moraine. In places overlain by thin, noncompact, poorly sorted silty sand to sand containing as much as 35 percent peb-
bles, cobbles, boulders, and interlayered with lenses of sorted sand, gravel, and silt. May be as much as 100 feet thick.

Meltwater deposits (late Wisconsinan) - Stratified, well- to moderately-sorted sand, yellowish-brown, brown, and brown-
ish-gray boulder-cobble to pebble gravel, pebbly sand and minor silt deposited by meltwater streams in valleys as out-
wash plains and fans and meltwater terraces and small glacial lakes as deltaic and lacustrine-fan deposits. In places 
includes light to dark gray, parallel-laminated, irregularly to rhythmically-bedded silt, clay, and very-fine sand; and minor 
cross-laminated silt, fine sand, and minor clay deposited on the floor of glacial lakes. As much as 150 feet thick.

Bedrock Formations

Bloomsburg Red Beds (Upper and Middle Silurian) - Pale red to grayish red, grayish red purple, and lesser medium gray 
and greenish gray, very fine to coarse grained, cross bedded to planar bedded, thin to thick bedded, partly conglomeratic 
sandstone with quartz grains as much as 0.4 in. long and flattened grayish red shale pebbles as much as 0.8 in. long. 
Also poorly bedded to laminated, pale red, light brown to moderate brown, and greenish gray shale and siltstone with 
scattered green reduction spots and with conspicuous cleavage, partly mud cracked and with scattered ferroan dolomite 
concretions about 0.5 in. in diameter. Fining upward cycles with basal channel sandstones are abundant. Minor medium 
gray, fine grained, planar bedded sandstone. Lower contact, placed at the base of the lowest red bed, is transitional. In 
some places a gray quartzite bed typical of the Shawangunk Formation is found interbedded with red beds less than 20 
feet above the base. About 1,500 feet thick.

Shawangunk Formation (Middle and Lower Silurian) - Very light to medium dark gray, and greenish gray to medium 
greenish gray, very fine to coarse grained, thin to thick bedded, planar bedded, cross bedded, and ripple bedded, light 
gray to light olive gray and moderate yellowish brown to moderate reddish orange and moderate brown weathering, con-
glomeratic quartzite with rounded to subangular quartz and lesser chert pebbles as much as 2.25 in. long, but averaging 
about 0.25 in. long, and dark gray to grayish black silty shale pebbles averaging about 2 in. long, cobbles may be as much 
as 10 in. long. Medium dark to dark gray, thin to thick bedded siltstone and shale is interbedded with the sandstone and 
conglomerate in a zone about 300 feet thick lying about 350 feet above the base of the formation in the western part of 
the quadrangle, and thins to about 110 feet and lies about 175 feet above the base in the eastern part. These shales and 
siltstones may be the Lizard Creek Member of the Shawangunk Formation separating the Tammany Member above from 
the Minsi Member below. These shales and siltstones are found in scattered outcrops along the steep east-facing cliff of 
Kittatinny Mountain. The members are not readily mapped in this quadrangle. Shales and siltstones ascribed to the Lizard 
Creek Member in eastern Pennsylvania thin northeastward through New Jersey and are represented by thin scattered 
intervals in southeastern New York (Epstein, 1993). The lower unconformable contact is covered by talus along the south 
slope of Kittatinny Mountain. About 1,400 feet thick

Ramseyburg Member of Martinsburg Formation (Upper Ordovician) – Interbedded medium- to dark-gray to brown-
ish-gray, fine- to medium-grained, thin- to thick-bedded quartzose to graywacke sandstone and siltstone and medium- 
to dark-gray, laminated to thin-bedded shale and slate. Unit forms fining upward sequences characterized by basal 
cross-bedded sandstone to siltstone grading upward through planar laminated siltstone into shale or slate. Locally, fining 
upward cycles may have a lower, medium- to thick-bedded, graded-bedded sandstone overlain by planar laminated 
sandstone to siltstone beneath the cross-bedded layer. Complete cycles may be an inch to several feet thick. Basal scour, 
sole marks, and soft-sediment deformation of beds are common in quartzose and graywacke sandstones. Lower contact 
placed at bottom of lowest thick- to very-thick-bedded graywacke but contact locally grades upwards through a sequence 
of dominantly thin-bedded slate and minor thin- to medium-bedded discontinuous and lenticular graywacke beds in the 
Bushkill Member. Parris and Cruikshank (1992) correlate unit with Orthograptus ruedemanni zone to lowest part of Clima-
cograptus spiniferus zone of Riva (1969, 1974). Unit is as much as 3,600 feet thick.

Bushkill Member of Martinsburg Formation (Upper Ordovician) – Medium- to medium-dark-gray-weathering, dark-
gray to black, thinly laminated to medium-bedded shale and slate; less abundant medium-gray- to brownish-gray-weath-
ering, dark-gray to black, laminated to thin-bedded, graywacke siltstone. Unit forms fining upward sequences character-
ized by either basal cross-bedded siltstone grading upward through planar laminated siltstone into slate, or laminated 
siltstone grading upward into slate. Locally, fining upward cycles may have a lower graded sandstone to siltstone overlain 
by planar laminated siltstone beneath the cross-bedded layer. Complete cycles may be an inch to several feet thick with 
slate comprising the thickest part. Lower contact with Jacksonburg Limestone gradational. Parris and other (2001) show 
that the unit is no older than the Corynoides americanus subzone of Orthograptus amplexicaulis zone (Berry, 1960; 1971; 
1976). Thicknesses here is 1,500 ft but can range from about 1,000 to 1,500 feet regionally.

Jacksonburg Limestone (Upper Ordovician) – Medium-dark-gray-weathering, medium-dark to dark-gray, laminated 
to thin-bedded, argillaceous limestone (cement-rock facies) and minor arenaceous limestone. Grades downward into 
medium-bluish-gray-weathering, dark-gray, very thin- to medium-bedded, commonly fossiliferous, interbedded fine- and 
medium-grained limestone and pebble-and-fossil limestone conglomerate (cement-limestone facies). Elsewhere, thick- to 
very thick-bedded dolomite cobble conglomerate occurs within basal sequence. Lower contact unconformable on Beek-
mantown Group, and on clastic facies of “Sequence at Wantage,” and conformable on carbonate facies of “Sequence 
at Wantage.” Unit contains long ranging North American Midcontinent province conodont zones Phragmodus undatus to 
Aphelognathus shatzeri indicating Rocklandian to Richmondian and possibly Kirkfieldian (Caradocian) ages (Sweet and 
Bergstrom, 1986). Thickness ranges from 150 feet to 1,000 ft. regionally.

“Sequence at Wantage” (Middle Ordovician) – Interbedded, very-thin- to medium-bedded limestone, dolomite, silt-
stone, and argillite. Upper carbonate facies is moderate-yellowish-brown to olive-gray weathering, medium- to dark-gray, 
very-fine- to fine-grained, laminated to medium-bedded limestone and dolomite. Rounded quartz sand occurs locally as 
floating grains and in very thin lenses. Lower clastic facies contain medium-gray, grayish-red to grayish-green, thin- to 
medium-bedded mudstone, siltstone, and fine-grained to pebbly sandstone. Fine-grained beds commonly contain minor 
disseminated subangular to subrounded, medium-grained quartz sand and pebble-sized chert. Some coarse-grained 
beds are cross-stratified. Unit is preserved in geographic low-lying surfaces on the Middle Ordovician unconformity ero-
sional surface. North American Midcontinent province conodonts have been identified by Harris and others (1995, p. 6) 
within the carbonate facies. Unit may be as much as 150 feet thick in the quadrangle.

Beekmantown Group, upper part (Lower Ordovician) – Light- to medium-gray- to yellowish-gray-weathering, medi-
um-light to medium-gray, aphanitic to medium-grained, thin- to thick-bedded, locally laminated, slightly fetid dolomite. Lo-
cally a light-gray- to light-bluish-gray- weathering, medium- to dark-gray, fine-grained, medium-bedded limestone occurs 
near the top of unit. Grades downward into medium- to dark-gray on weathered surface, medium- to dark-gray where 
fresh, medium- to coarse-grained, medium- to thick-bedded, strongly fetid dolomite. Contains pods, lenses and layers 
of dark-gray to black rugose chert. Lower contact conformable and grades into the fine-grained, laminated dolomite of 
Beekmantown Group, lower part. Contains conodonts of North American Midcontinent province Rossodus manitouensis 
zone to Oepikodus communis zone (Karklins and Repetski, 1989), so unit is Ibexian (Tremadocian to Arenigian) as used 
by Sweet and Bergstrom (1986). In map area, unit correlates with the Epler and Rickenbach Dolomite of Drake and others 
(1985) and the Ontelaunee Formation of Markewicz and Dalton (1977). Thickness averages about 400 feet but locally is 
as much as 800 feet. 

Beekmantown Group, lower part (Lower Ordovician to Upper Cambrian) – Consists of an upper, middle and lower strati-
graphic subdivisions. Upper sequence is light- to medium-gray- to dark-yellowish-orange-weathering, light-olive-gray to 
dark-gray, fine- to medium-grained, very thin- to medium-bedded locally laminated dolomite. Middle sequence is olive-gray- 
to light-brown- and dark-yellowish-orange-weathering, medium- to dark-gray, aphanitic to medium-grained, thin-bedded, 
locally well laminated dolomite which grades into discontinuous lenses of light-gray- to light-bluish-gray-weathering, me-
dium- to dark-gray, fine-grained, thin- to medium-bedded limestone. Limestone has “reticulate” mottling characterized 
by anastomosing light-olive-gray- to grayish-orange-weathering, silty dolomite laminae surrounding lenses of limestone. 
Limestone may be completely dolomitized locally. Grades downward into medium dark- to dark-gray, fine-grained, well 
laminated dolomite having local pods and lenses of black to white chert. Lower sequence consists of medium- to medi-
um-dark-gray, aphanitic to coarse-grained, thinly-laminated to thick-bedded, slightly fetid dolomite having quartz-sand 
laminae and sparse, very thin to thin, black chert beds. Individual bed thickness decreases, and floating quartz sand 
content increases toward lower gradational contact. Contains conodonts of North American Midcontinent province Cordy-
lodus proavus to Rossodus manitouensis zones (Karklins and Repetski, 1989) as used by Sweet and Bergstrom (1986), 
so that unit is Ibexian (Tremadocian). Entire unit is Stonehenge Limestone of Drake and others (1985) and Stonehenge 
Formation of Volkert and others (1989). Markewicz and Dalton (1977) correlate upper and middle sequences as Epler 
Formation and lower sequence as Rickenbach Formation. Unit is about 600 feet thick.

Allentown Dolomite (Upper Cambrian) - Unit is subdivided into an upper and lower unit (Markewicz and Dalton, 1977). 
Upper sequence is light-gray- to medium-gray-weathering, medium-light- to medium-dark-gray, fine- to medium-grained, 
locally coarse-grained, medium- to very thick-bedded dolomite, local shaly dolomite near the bottom. Floating quartz 
sand and two series of medium-light- to very light-gray, medium-grained, thin-bedded quartzite and discontinuous dark-
gray chert lenses occur directly below upper contact. Lower sequence is medium- to very-light-gray-weathering, light- to 
medium dark-gray, fine- to medium-grained, thin- to medium-bedded dolomite and shaly dolomite. Weathered exposures 
characterized by alternating light- and dark-gray beds. Ripple marks, oolites, algal stromatolites, cross-beds, edgewise 
conglomerate, mud cracks, and paleosol zones occur throughout but are more abundant in lower sequence. Lower 
contact gradational into Leithsville Formation. Unit contains a trilobite fauna of Dresbachian (early Late Cambrian) age 
(Weller, 1903; Howell, 1945). Approximately 1,800 feet thick.

Leithsville Formation (Middle to Lower Cambrian) - Shown in section only - Unit is subdivided into an upper, mid-
dle and lower unit (Markewicz and Dalton, 1977). Upper sequence, rarely exposed, is mottled, medium-light- to me-
dium-dark-gray-weathering, medium- to medium-dark-gray, fine- to medium-grained, medium- to thick-bedded, locally 
pitted and friable dolomite. Middle sequence is grayish-orange or light- to dark-gray, grayish-red, light-greenish-gray- or 
dark-greenish-gray-weathering, aphanitic to fine-grained, thin- to medium-bedded dolomite, argillaceous dolomite, dolo-
mitic shale, quartz sandstone, siltstone, and shale. Lower sequence is medium-light- to medium-gray-weathering, me-
dium-gray, fine- to medium-grained, thin- to medium-bedded dolomite. Quartz-sand lenses occur near lower gradational 
contact with Hardyston Quartzite. Archaeocyathids of Early Cambrian age are present in formation at Franklin, New 
Jersey, suggesting an intraformational disconformity between Middle and Early Cambrian time (Palmer and Rozanov, 
1967). Unit also contains Hyolithellus micans (Offield,1967; Markewicz, 1968). Approximately 800 feet. thick regionally. 

Hardyston Quartzite (Lower Cambrian) - Shown in section only - Medium- to light-gray, fine- to coarse-grained, medium- 
to thick-bedded quartzite, arkosic sandstone and dolomitic sandstone. Contains Scolithus linearis (?) and fragments of 
the trilobite Olenellus thompsoni of Early Cambrian age (Nason, 1891; Weller, 1903). Thickness ranges from 0 feet to a 
maximum of 100 feet regionally.

Proterozoic Undivided - Shown in section only - composed dominantly of orthogneiss and paragneiss of Grenville age 
and post Grenville granitic intrusions.
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Figure 1.  Evolution of Paleozoic carbonate rock nomenclature. This map follows the units of Drake and others 
(1996) with the inclusion of the revised age correlations due to changes in the International Stratigraphic Time 
Scale (U.S. Geological Survey, 2010) which raised the Cambrian-Ordovician boundary. Red dashed line 
indicates the evolving placement of the Cambrian-Ordovician boundary. Symbols * and ** used to differentiate 
between different authors using the same formation name.

Figure 4. Rows 1 and 2 plot Martinsburg cleavage orientations both as poles to planes on lower hemisphere, equal area projections (1a and 2a) and as dip directions on rose diagram 
(1b and 2b). Plots 1c and 2c plot bedding cleavage intersection lineations. Row 3 presents similar plots as rows 1 and 2 but depicts crenulation cleavage data which was only found in the  
southeast section of the quadrangle. Maps to the right in the figure show the areal location where the data was collected. Data density contours use 1% area with a 2% contour interval. N 
represents the number of readings analyzed in the plot. Circles labeled 1, 2 and 3 represent calculated eigenvectors with 1 being the largest eigenvalue and 3 the smallest.  Great circle 
represents cylindrical fold axis of data defined by the vector to circle 3,  the smallest eigenvalue. Eigenvalues and fold axis are defined using the cylindrical best fit option in stereonet 
software described in Allmendinger and others (2013) and Cardozo and Allmendinger (2013). 
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Figure 3. Equal area lower hemisphere spherical projection and rose diagram plots of bedding of the different structural 
regions where Row 1 displays data from the Silurian units; Row 2 is the northern Martinsburg belt; Row 3 is the carbon-
ates in the Ackerman anticline and Row 4 is the southern Martinsburg belt and limited carbonates. Orientations both as 
poles to planes on lower hemisphere, equal area projections (1a, 2a, 3a and 4a) and as dip directions on rose diagram 
(1b, 2b, 3b and 4b). Maps to the right in the figure show the areal location where the data was collected. Data density 
contours use 1% area with a 2% contour interval. N represents the number of readings analyzed in the plot. Bold dots 
labeled 1, 2 and 3 represent calculated eigenvectors with 1 being the largest eigenvalue and 3 the smallest.  Great circle 
represents cylindrical fold axis of data defined by the plane to circle 3,  the smallest eigenvalue. Eigenvalues and fold 
axis are defined using the cylindrical best fit option in stereonet software described in Allmendinger and others (2013) 
and Cardozo and Allmendinger (2013).
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