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INTRODUCTION

The Bloomsbury 7.5-minute quadrangle is located in western New Jersey in Warren and Hunterdon Counties. The 
quadrangle straddles the boundary between two physiographic regions; the New Jersey Highlands and the Piedmont. The 
geologic interpretations presented here supersede those shown on the bedrock geologic maps of Drake (1967) and Drake 
and others (1996). The geologic maps shown in these studies lack the detail shown on, and continuity with, recent detailed 
mapping of adjacent quadrangles, as well as conformity with the present geologic framework proposed for Mesoproterozoic 
rocks of the New Jersey Highlands and Paleozoic rocks of the Valley and Ridge physiographic provinces. This map provides 
updated detailed geologic information on the stratigraphy, structure, ages and descriptions of geologic units in the map 
area. The cross section shows a vertical profile of the geologic units and their structure, and rose diagrams and contour 
plots in figures 1a through 1d provide a directional analysis of selected structural features. Surficial geologic mapping in the 
Bloomsbury quad was conducted by Witte (2023). 

Damming of Merrill Creek on Scotts Mountain resulted in the creation of Merrill Creek Reservoir. The river forms the border 
between Warren and Hunterdon Counties in the southern third of this map and flows in a southwestern direction toward 
the Delaware River. The Musconetcong River constitutes the dominant drainage. The highest point is on Scotts Mountain 
just northeast of Merrill Creek Reservoir and attains a maximum elevation of 1,093 feet above sea level. Because bedrock 
there is no longer exposed, we relied on the results of geotechnical studies conducted prior to and during construction of the 
reservoir (Woodward-Clyde consultants, 1979a;b). 

STRATIGRAPHY

Mesozoic rocks

The youngest rocks are in the Newark Basin, a northeast-trending half-graben that extends through the southeastern part 
of the map area. The Newark Basin contains a total of approximately 24,600 feet of interbedded Upper Triassic and Lower 
Jurassic sedimentary and igneous rocks. The Bloomsbury quadrangle includes approximately 1,500 feet in the middle part 
of this section, here consisting predominantly of conglomeratic facies of the Upper Triassic Passaic Formation.

Paleozoic rocks

Lower Paleozoic rocks of the Kittatinny Valley Sequence mainly underlie the Pohatcong and Musconetcong valleys. 
Formations of Cambrian through Ordovician age of the Kittatinny Valley Sequence were previously considered to be part of 
the Lehigh Valley Sequence of MacLachlan (1979) but were reassigned by Drake and others (1996) to the Kittatinny Valley 
Sequence. The Kittatinny Valley Sequence includes the Kittatinny Supergroup (Leithsville Formation, Allentown Dolomite, 
lower and upper parts of the Beekmantown Group), “Sequence at Wantage”, Jacksonburg Limestone, and Martinsburg 
Formation. The Lower Cambrian Hardyston Quartzite rests unconformably on Mesoproterozoic rocks and, where present, 
on Neoproterozoic rocks. 

Lower Paleozoic rocks of the Jutland Klippe Sequence are in fault contact with Mesoproterozoic rocks near Pattenburg 
where they are locally preserved along the Mesozoic border fault. These rocks become more abundant to the east in the 
High Bridge quadrangle (Monteverde and others, 2015). Rocks of the Jutland Klippe Sequence were folded and thrust over 
rocks of the Kittatinny Supergroup during the Taconic Orogeny. Alkalic dikes that have a geochemical affinity to lamprophyre 
intruded Mesoproterozoic rocks on Musconetcong Mountain and on Pohatcong Mountain. The dikes are interpreted to be 
lower Silurian based on radiometric ages of 435 ± 20 million years (Ma) (Zartman and others, 1967) to 422 ± 14 Ma (Eby and 
others, 1992) and they correlate to the Beemerville Intrusive Suite in the Branchville quadrangle (Drake and Monteverde, 
1992). 

Neoproterozoic rocks

A single diabase dike intruded Mesoproterozoic rocks along the northern edge of Merrill Creek Reservoir in the northwestern 
part of the area. The dike strikes northeast and has sharp contacts and chilled margins against Mesoproterozoic rocks. 
Similar dikes are widespread and abundant in the New Jersey Highlands where they are interpreted to have an age of 
about 600 Ma (million years ago) based on the fact they intruded only Mesoproterozoic rocks and they have geochemical 
compositions that differ from Paleozoic dikes and Mesozoic diabase and basalt (Volkert and Puffer, 1995). On the north side 
of Pohatcong Mountain, felsic volcanic rocks of inferred Neoproterozoic age of the Chestnut Hill Formation of Drake (1984) 
unconformably overlie Mesoproterozoic rocks. 

Mesoproterozoic rocks

Mesoproterozoic rocks that are part of the New Jersey Highlands are widespread and abundant throughout all but 
the southeastern part of the map area. Most Mesoproterozoic rocks were metamorphosed to granulite facies during 
the Grenvillian Orogeny about 1,045 Ma (Volkert and others, 2010). The oldest units are the Losee Suite formed in a 
continental-margin magmatic arc and spatially associated metasedimentary and metavolcanic supracrustal rocks formed 
in a back-arc basin inboard of the Losee magmatic arc (Volkert, 2004). The Losee Suite includes metamorphosed plutonic 
rocks mapped as quartz-oligoclase gneiss and hornblende-quartz-oligoclase gneiss, and metamorphosed volcanic rocks 
mapped as biotite-quartz oligoclase gneiss. Some amphibolite intercalated with the Losee Suite also formed from a volcanic 
protolith. Rocks of the Losee Suite yielded U-Pb zircon ages of 1,282-1,248 Ma (Volkert and others, 2010). Supracrustal 
rocks include quartzofeldspathic gneisses mapped as potassic-feldspar gneiss, biotite-quartz-feldspar gneiss, hornblende-
quartz-feldspar gneiss, and clinopyroxene-quartz-feldspar gneiss, calc-silicate rocks mapped as pyroxene gneiss, and 
marble. Most amphibolite intercalated with metasedimentary rocks formed from a volcanic protolith, although locally some 
amphibolite interlayered with metasedimentary rocks may have formed from a sedimentary protolith. Supracrustal rocks 
yielded U-Pb zircon ages of 1,299-1,251 Ma (Volkert and others, 2010) that closely overlap the age of the Losee Suite. 

Granite and related rocks of the Byram and Lake Hopatcong Intrusive Suites that comprise the Vernon Supersuite (Volkert 
and Drake, 1998) include mainly granite, alaskite and local quartz syenite, quartz monzonite, syenite, and monzonite. Rocks 
of both suites have intruded the Losee Suite and supracrustal rocks. Byram and Lake Hopatcong rocks yielded similar U-Pb 
zircon ages of 1,185-1,182 Ma (Volkert and others, 2010). Widespread bodies of hornblende- and clinopyroxene-bearing 
granite and alaskite mapped as microantiperthite alaskite appear to grade along strike into hornblende granite of the Byram 
Suite, suggesting that they may share a common age and origin with the Vernon Supersuite. However, these rocks remain 
undated, and therefore are shown as having an uncertain correlation to other granitic rocks in the map area. 

The youngest Mesoproterozoic rocks in the quadrangle are granite pegmatites that are undeformed and lack penetrative 
crystallization (metamorphic) foliation. They intruded most other Mesoproterozoic rocks in the area as tabular to irregular 
bodies that are highly discordant to foliation. Elsewhere in the Highlands similar undeformed pegmatites yielded U-Pb zircon 
ages of 1,004-986 Ma (Volkert and others, 2005). 

STRUCTURE

Paleozoic bedding and cleavage

Bedding in the Paleozoic rocks is fairly uniform and strikes northeast an average of N.46°E. (Fig. 1a). Most beds dip 
northwest and less commonly southeast, although locally they are overturned steeply southeast. Bedding ranges in dip from 
4° to 86° and averages 51°. 

Cleavage (closely-spaced parallel partings) is present in most Paleozoic rocks but is best developed in finer-grained 
lithologies such as shale and slate of the Martinsburg Formation. Cleavage in the Paleozoic rocks typically strikes northeast 
an average of N.38°E. (Fig. 1c), parallel to the strike of bedding. Cleavage dips predominantly southeast at 11° to 86° and 
averages 51°. A second (crenulation) cleavage that cuts the primary cleavage occurs only in the Martinsburg Formation. 
The second cleavage crenulates and locally offsets the primary cleavage (Herman and others, 1997). It is developed in the 
footwall of large overthrusts (Herman and Monteverde, 1989; Herman and others, 1997). The crenulation cleavage varies in 
strike from N.89°E. to N.89°W. and averages N.66°E. It dips an average of 29° south or an average of 34° north.

Proterozoic foliation

Crystallization foliation (the parallel alignment of mineral grains) in the Mesoproterozoic rocks is an inherited feature 
resulting from compressional stresses during the Grenvillian Orogeny about 1,045 Ma. The strike of foliation is fairly uniform 
throughout the area and strikes northeast an average of N.47°E. (Fig. 1d). Foliation varies locally due to folding and strikes 
mainly northwest in the hinges of major folds. Northeast-trending foliations dip southeast and less commonly northwest at 
21° to 90° and average 58°. Northwest-striking foliation dips gently to moderately northeast and locally southwest at 19° to 
40°.

Folds

Folds in the Paleozoic rocks formed during the Taconic and Alleghanian Orogenies at about 450 Ma and 250 Ma, respectively. 
Paleozoic folds are open to tight; upright to locally overturned; and are gently inclined to recumbent. Larger folds in the map 
area plunge northeast. Taconic-aged folds are cut by younger Alleghanian faults (Herman and Monteverde, 1989; Herman 
and others, 1997). These folds formed in the hinterland of emergent Taconic thrusting to the southwest in the area of Clinton 
in Hunterdon County. Fold intensity and overturning increase toward this Taconic structural culmination.

Folds in Mesoproterozoic rocks deform planar metamorphic fabrics and, therefore, postdate the development of 
crystallization foliation. Characteristic fold patterns on Scotts Mountain include broad northeast-plunging, upright to locally 
northwest-overturned antiforms and synforms. Folds on Pohatcong Mountain are characterized by open, south-southeast-
plunging, west-overturned or upright antiforms and synforms. Folds on Musconetcong Mountain include east-northeast-
plunging, north-northwest overturned antiforms and synforms that refold earlier-formed open to tight, south-plunging and 
west-overturned antiforms and synforms. Throughout the map area the average plunge of east-northeast trending folds is 
22° and of south trending folds is 40°. 

Faults

The structural geology of the Bloomsbury quadrangle is dominated by a series of northeast-trending faults that deform 
both Mesoproterozoic and Paleozoic rocks. These faults were active during the Grenvillian, Taconic and Alleghanian 
Orogenies and during the Mesozoic. Most faults are characterized by brittle deformation fabric consisting of brecciation, 
the retrogression of mafic mineral phases, chlorite or epidote-coated fractures or slickensides, and/or close-spaced fracture 
cleavage. A few faults are characterized by ductile deformation fabric, noted in the fault description below. Starting from 
the north and moving south, the principal faults include the Merrill Creek fault, Whippoorwill fault, Brass Castle thrust 
fault, Karrsville thrust fault, Pohatcong thrust fault, Kennedys fault, Musconetcong thrust fault, Warren Glen fault, Sweet 
Hollow fault, and Mulhockaway Creek fault. The newly recognized and named Merrill Creek fault on Scotts Mountain strikes 
northeast and dips steeply southeast. It contains Mesoproterozoic rocks on both the hanging wall and footwall along its 
entire length. Kinematic indicators suggest components of both reverse and strike-slip movement but the relative timing of 
each is not well constrained. Good exposures of this fault are seen along a small drainage north of Lows Hollow and along 
the gorge south of Merrill Creek Reservoir. The Whippoorwill fault strikes northeast, parallel to the Merrill Creek fault on 
Scotts Mountain, and it dips steeply southeast to vertically. Drake (1967) interpreted this fault as a moderately southeast-
dipping thrust fault, whereas Kummel (ca. 1900), Bayley (1941) and Monteverde and others (1994) interpreted it as a 
normal fault. Our current mapping recognizes kinematic indicators that are consistent with a normal movement sense. The 
fault displays consistent brittle fault fabric much like that of the Merrill Creek fault. The fate of both faults along strike to 
the northeast is uncertain because of poor bedrock exposure, but it appears they are losing displacement and terminate 
just east of the reservoir. The northeast-striking, southeast-dipping Karrsville thrust fault occurs in the Pohatcong Valley. 
It contains Paleozoic rocks on the hanging wall and footwall along its entire length. The fault merges with, or is cut off by, 
the Brass Castle thrust fault south of County House Mountain in the Washington quadrangle (Drake and others, 1994). 
The northeast-striking, southeast-dipping Brass Castle thrust fault bounds the southeast side of Scotts Mountain where it 
contains Paleozoic rocks on the hanging wall and Mesoproterozoic rocks on the footwall. It continues northeastward into 
the adjacent Washington quadrangle where it bounds County House Mountain on the southeast, placing progressively 
older Paleozoic rocks onto Mesoproterozoic rocks (Drake and others, 1994; Monteverde and others, 1994). The northeast-
striking, southeast-dipping Pohatcong thrust fault borders the north side of Pohatcong Mountain. It contains Mesoproterozoic 
rocks and Hardyston Quartzite on the hanging wall and Paleozoic rocks on the footwall. This fault merges with, or is cut off 
by, Kennedys fault just south of Pohatcong Mountain. The northeast-striking, southeast-dipping Kennedys fault borders the 
southeast side of Pohatcong Mountain. It is a steeply dipping reverse fault that contains Paleozoic rocks on the hanging 
wall and Mesoproterozoic rocks on the footwall. South of Pohatcong Mountain it contains Paleozoic rocks on both sides of 
the fault. The northeast-striking, southeast-dipping Musconetcong thrust fault borders the northwest side of Musconetcong 
Mountain. It contains Mesoproterozoic rocks on the hanging wall and Paleozoic rocks on the footwall along its entire 
length. At West Portal, Leithsville Formation is exposed in a small window through Mesoproterozoic rocks. The northeast-
striking, moderately to steeply southeast-dipping Warren Glen fault bounds the west side of Musconetcong Mountain where 
it contains Mesoproterozoic rocks on both the hanging wall and footwall. Drake (1967) recognized this fault but ended it just 
inside the quadrangle. Our mapping extends the fault to West Portal where it is cut off by the Musconetcong thrust fault. A 
ductile deformation fabric characterizes the Warren Glen fault that is well exposed in a stream valley south of Bloomsbury. 
The newly recognized and named Sweet Hollow fault occurs along the crest of Musconetcong Mountain where it contains 
Mesoproterozoic rocks on both sides. The fault strikes northeast and dips steeply southeast to vertically. It is characterized 
by a ductile deformation fabric. Kinematic indicators suggest the dominant movement sense is right lateral strike-slip. The 
Mulhockaway Creek border fault is a major structural feature that contains Mesoproterozoic rocks on the footwall and 
Mesozoic and local Paleozoic rocks on the hanging wall. The fault strikes northeast and dips southeast. Mesoproterozoic 
and Paleozoic rocks throughout the map area are locally deformed by small, northeast or northwest-trending faults, most 
of which occur at outcrop scale. Widths of these faults range from inches to a few feet, with some of the wider fault zones 
likely resulting from the intersection of smaller anastomozing faults. 

Joints

Joints are a common feature in the Paleozoic and Mesoproterozoic rocks. They are developed in all Paleozoic rocks, but are 
more common in massive rocks such as limestone, dolomite, and sandstone than in finer-grained rocks such as shale and 
slate. Two main joint sets occur. One set strikes northeast an average of N.45°E. (Fig. 1b) and dips moderately to steeply 
northwest an average of 62°. The other set strikes northwest an average of N.49°W. (Fig. 1b) and dips predominantly 
southwest an average of 67°.
 	
Joints in Mesoproterozoic rocks are characteristically planar, moderately well formed, moderately to widely spaced, and 
moderately to steeply dipping. Surfaces are typically unmineralized, except where near faults, and are smooth and less 
commonly slightly irregular. Joints are typically spaced from a foot to tens of feet apart. Those in massive-textured rocks such 
as granite tend to be more widely spaced, irregularly formed and discontinuous than joints in layered gneiss. Those formed 
near faults typically are spaced more closely and one foot or less apart. The dominant joint strike in Mesoproterozoic rocks 
is nearly orthogonal to the strike of crystallization foliation, and this orthogonal relationship is present in Mesoproterozoic 
rocks throughout the Highlands (Volkert, 1996). As a result, joint sets are not uniform due to folding. The dominant set strikes 
northwest an average of N.40°W. and dips moderately to steeply southwest and less commonly northeast. A subordinate set 
strikes northeast an average of N.50°E. and dips moderately to steeply southeast and the northwest with equal abundance. 
The average dip of all joints is 71°. 

ECONOMIC RESOURCES 

Mesoproterozoic and Paleozoic rocks hosted deposits of iron ore mined predominantly during the 19th century. Detailed 
descriptions of most of these mines are given in Bayley (1910, 1941). Magnetite was extracted from numerous mines hosted 
by various Mesoproterozoic rocks on Scotts Mountain, Pohatcong Mountain and Musconetcong Mountain. Limonite was 
mined from Paleozoic rocks in the Pohatcong and Musconetcong Valleys. Mica (phlogopite) was mined from Mesoproterozoic 
rocks on Scotts Mountain, one of which is currently beneath Merrill Creek Reservoir. Mesoproterozoic granite and gneiss 
were quarried for crushed stone on Musconetcong Mountain and marble was quarried on Pohatcong Mountain. Paleozoic 
dolomite was quarried at several locations in the Pohatcong and Musconetcong Valleys. Deposits of sand and gravel were 
formerly worked in the map area (Witte, 2023).

DESCRIPTION OF MAP UNITS

MESOZOIC ROCKS

Passaic Formation (Lower Jurassic and Upper Triassic) – Reddish-brown to brownish-red, medium- to coarse-grained 
pebble conglomerate, pebbly sandstone and feldspathic sandstone in upward-fining sequences 3 to 6 ft. thick. Clasts are 
subangular to subrounded, quartz and quartzite in sandstone matrix. Sandstone is medium- to coarse-grained, feldspathic, 
and locally contains pebble and cobble layers. Maximum thickness unknown.

PALEOZOIC ROCKS

Lamprophyre dikes (Lower to Middle Silurian) – Light-medium- to medium-dark-gray, fine-grained to aphanitic dikes and 
small intrusive bodies of mainly alkalic composition. Contacts are typically chilled and sharp against enclosing country rock. 
Dikes intrude rocks that range in age from Mesoproterozoic through Ordovician. Field relationships in combination with 
radiometric age data of dikes indicate a lower Silurian age.

Jutland Klippe Sequence

Rocks of the Jutland Klippe Sequence, undifferentiated (Middle Ordovician to upper Cambrian) – Heterogeneous 
sequence of interbedded red, green, tan and gray shale to sandstone; interbedded fine-grained graywacke siltstone and 
beds or lenses of sandstone.  Regionally interbedded fine-grained, thin-bedded limestone, plus or minus floating quartz-
sand grains. Limestone locally resembles an intraformational conglomerate. Contains graptolites in the span of Anisograptus 
to Isograptus caduceus (Berry, 1960) and conodonts of the Cordylodus proavus to Paroistodus proteus and Prioniodus 
triangularis to Pygodus anserinus faunas of the North Atlantic Realm (Karklins and Repetski, 1989). Lower contact probably 
a fault.  Thickness is unknown.

Kittatinny Valley Sequence

Bushkill Member of Martinsburg Formation (upper Middle Ordovician) – Medium- to medium-dark-gray-weathering, 
dark-gray to black, thinly laminated to medium-bedded shale and slate; less abundant medium-gray- to brownish-gray-
weathering, dark-gray to black, laminated to thin-bedded, greywacke siltstone. Unit forms fining upward sequences 
characterized by either basal cross-bedded siltstone grading upwards through planar laminated siltstone into slate, or 
laminated siltstone grading upwards into slate. Locally, fining upward cycles may have a lower graded sandstone to siltstone 
overlain by planar laminated siltstone beneath the cross-bedded layer. Complete cycles may be an inch to several feet thick 
with slate comprising the thickest part. Lower contact with Jackonsburg Limestone gradational, but commonly disrupted 
by thrust faulting. Parris and Cruikshank (1992) show that regionally the unit contains graptolites of zones Diplograptus 
multidens to Corynoides americanus (Riva, 1969; 1974) indicating Shermanian (Caradocian) age. Thicknesses regionally 
range from 1,500 ft. to a maximum of approximately 4,000 ft. near Belvidere to the north of the Bloomsbury quadrangle. 

Jacksonburg Limestone (Middle Ordovician) – Medium-dark-gray-weathering, medium-dark to dark-gray, laminated 
to thin-bedded, argillaceous limestone (cement-rock facies) and minor arenaceous limestone. Grades downward into 
medium-bluish-gray-weathering, dark-gray, very thin- to medium-bedded, commonly fossiliferous, interbedded fine- and 
medium-grained limestone and pebble-and-fossil limestone conglomerate (cement-limestone facies). Elsewhere, thick- 
to very thick-bedded dolomite cobble conglomerate occurs within basal sequence. Lower contact unconformable on 
Beekmantown Group, and on clastic facies of “Sequence at Wantage,” and conformable on carbonate facies of “Sequence 
at Wantage.” Unit contains North American Midcontinent province conodont zones Phragmodus undatus to Aphelognathus 
shatzeri indicating Rocklandian to Richmondian and possibly Kirkfieldian (Caradocian) ages (Sweet and Bergstrom, 1986). 
Regionally unit ranges in thickness from 150 ft. to 1,000 ft. 

“Sequence at Wantage” (Middle Ordovician) – Interbedded, very thin- to medium-bedded limestone, dolomite, siltstone, 
and argillite. Upper carbonate facies, locally present outside of the map area, is moderate-yellowish-brown to olive-gray 
weathering, light- to dark-gray, very fine- to fine-grained, laminated to medium-bedded limestone and dolomite. Rounded 
quartz sand occurs locally as floating grains and very thin lenses. Clastic facies contains medium-gray, grayish-red to grayish-
green, thin- to medium-bedded mudstone, siltstone and fine-grained to pebbly sandstone. Fine-grained beds commonly 
contain minor disseminated subangular to subrounded, medium-grained quartz sand and pebble-sized chert. Some coarse-
grained beds are cross-stratified. Unit is restricted to lows on surface of Beekmantown unconformity. Regional relations and 
North American Midcontinent province conodonts within carbonate facies, identified by Anita Harris (U.S. Geological Survey, 
written communication, 1990) limit age range from no older than Rocklandian to no younger than Kirkfieldian. May be as 
much as 150 ft. thick. Unit is well exposed in vicinity of Asbury.

Beekmantown Group, upper part (Lower Ordovician) – Light- to medium-gray- to yellowish-gray-weathering, medium-
light to medium-gray, aphanitic to medium-grained, thin- to thick-bedded, locally laminated, slightly fetid dolomite. Locally 
light-gray- to light-bluish-gray- weathering, medium- to dark-gray, fine-grained, medium-bedded limestone occurs near the 
top of unit. Grades downward into medium- to dark-gray on weathered surface, medium- to dark-gray where fresh, medium- 
to coarse-grained, medium- to thick-bedded, strongly fetid dolomite. Contains pods, lenses and layers of dark-gray to black 
rugose chert. Lower contact conformable and grades into the fine-grained, laminated dolomite of Beekmantown Group, 
lower part. Contains conodonts of North American Midcontinent province Rossodus manitouensis zone to Oepikodus 
communis zone (Karklins and Repetski, 1989), so that unit is Ibexian (Tremadocian to Arenigian) as used by Sweet and 
Bergstrom (1986). In map area, unit correlates with the Epler and Rickenbach Dolomite of Drake and others (1985) and the 
Ontelaunee Formation of Markewicz and Dalton (1977). Unit averages about 200 ft. in thickness but is as much as 800 ft. 
thick. 

Beekmantown Group, lower part (Lower Ordovician) – Upper sequence is light- to medium-gray- to dark-yellowish-
orange-weathering, light-olive-gray to dark-gray, fine- to medium-grained, very thin- to medium-bedded locally laminated 
dolomite. Middle sequence is olive-gray- to light-brown- and dark-yellowish-orange-weathering, medium- to dark-gray, 
aphanitic to medium-grained, thin-bedded, locally well laminated dolomite which grades into discontinuous lenses of light-
gray- to light-bluish-gray-weathering, medium- to dark-gray, fine-grained, thin- to medium-bedded limestone. Limestone has 
“reticulate” mottling characterized by anastomosing light-olive-gray- to grayish-orange-weathering, silty dolomite laminae 
surrounding lenses of limestone. Limestone may be completely dolomitized locally. Grades downward into medium dark- 
to dark-gray, fine-grained, well laminated dolomite having local pods and lenses of black to white chert. Lower sequence 
consists of medium- to medium-dark-gray, aphanitic to coarse-grained, thinly-laminated to thick-bedded, slightly fetid 
domolite having quartz-sand laminae and sparse, very thin to thin, black chert beds. Individual bed thickness decreases 
and floating quartz sand content increases toward lower gradational contact. Contains conodonts of North American 
Midcontinent province Cordylodus proavus to Rossodus manitouensis zones (Karklins and Repetski, 1989) as used by 
Sweet and Bergstrom (1986), so that unit is Ibexian (Tremadocian). Entire unit is Stonehenge Limestone of Drake and 
others (1985) and Stonehenge Formation of Volkert and others (1989). Markewicz and Dalton (1977) correlate upper and 
middle sequences as Epler Formation and lower sequence as Rickenbach Formation. Unit is about 600 ft. thick.

Allentown Dolomite (upper Cambrian) – Upper sequence is light-gray- to medium-gray-weathering, medium-light- to 
medium-dark-gray, fine- to medium-grained, locally coarse-grained, medium- to very thick-bedded dolomite; local shaly 
dolomite near the bottom. Floating quartz sand and two series of medium-light- to very light-gray, medium-grained, thin-
bedded quartzite and discontinuous dark-gray chert lenses occur directly below upper contact. Lower sequence is medium- 
to very-light-gray-weathering, light- to medium dark-gray, fine- to medium-grained, thin- to medium-bedded dolomite and 
shaly dolomite. Weathered exposures characterized by alternating light- and dark-gray beds. Ripple marks, oolites, algal 
stromatolites, cross-beds, edgewise conglomerate, mud cracks, and paleosol zones occur throughout but are more abundant 
in lower sequence. Lower contact gradational into Leithsville Formation. Unit contains a trilobite fauna of Dresbachian (early 
Late Cambrian) age (Weller, 1903; Howell, 1945).  Approximately 1,800 ft. thick regionally. 

Leithsville Formation (middle to lower Cambrian) – Upper sequence, rarely exposed, is mottled, medium-light- to 
medium-dark-gray-weathering, medium- to medium-dark-gray, fine- to medium-grained, medium- to thick-bedded, locally 
pitted and friable dolomite. Middle sequence is grayish-orange or light- to dark-gray, grayish-red, light-greenish-gray- or 
dark-greenish-gray-weathering, aphanitic to fine-grained, thin- to medium-bedded dolomite, argillaceous dolomite, dolomitic 
shale, quartz sandstone, siltstone, and shale. Lower sequence is medium-light- to medium-gray-weathering, medium-gray, 
fine- to medium-grained, thin- to medium-bedded dolomite. Quartz-sand lenses occur near lower gradational contact with 
Hardyston Quartzite. Archaeocyathids of early Cambrian age are present in formation at Franklin, New Jersey, suggesting 
an intraformational disconformity between middle and early Cambrian time (Palmer and Rozanov, 1967). Unit also contains 
Hyolithellus micans (Offield, 1967; Markewicz, 1968). Approximately 800 ft. thick regionally. 

Hardyston Quartzite (lower Cambrian) – Medium- to light-gray, fine- to coarse-grained, medium- to thick-bedded quartzite, 
arkosic sandstone and dolomitic sandstone. Contains Scolithus linearis (?) and fragments of the trilobite Olenellus thompsoni 
of early Cambrian age (Nason, 1891; Weller, 1903). Thickness ranges from 0 ft. to a maximum of 200 ft. regionally. 

PROTEROZOIC ROCKS
 

Diabase dikes (Neoproterozoic) – Light gray- or brownish-gray-weathering, dark-greenish-gray, aphanitic to fine-grained 
dikes. Composed principally of plagioclase (labradorite to andesine), augite, and ilmenite and (or) magnetite. Locally 
occurring pyrite blebs are common. Contacts are typically chilled and sharp against enclosing Mesoproterozoic country 
rock. 

Chestnut Hill Formation (Neoproterozoic) – Dark greenish-gray, medium-grained, thin bedded feldspathic sandstone and 
possible felsic volcanic rock composed of euhedral to subhedral, equidimensional, pinkish-white K-feldspar grains in a dark 
greenish-gray, fine-grained matrix. Unit is exposed as a very thin remnant that unconformably overlies Mesoproterozoic 
rocks on the west side of Pohatcong Mountain.

Granite pegmatite (Neoproterozoic) - Pinkish-gray- to buff-weathering, pinkish-white or light-pinkish-gray, coarse- to very-
coarse-grained, undeformed and nonfoliated granite bodies of variable thickness. Intrude most other Mesoproterozoic rocks 
in the map area as tabular to irregular bodies that are highly discordant to crystallization foliation. Composed principally 
of microcline microperthite, quartz, and oligoclase. Locally contains abundant hornblende. Most pegmatite in the area is 
interpreted to be part of the Byram Intrusive Suite.

Vernon Supersuite (Volkert and Drake, 1998)
Byram Intrusive Suite (Drake, 1984)

Hornblende granite (Mesoproterozoic) – Pinkish-gray- to buff-weathering, pinkish-white or light-pinkish-gray, medium- to 
coarse-grained, foliated granite composed of microcline microperthite, quartz, oligoclase, and hornblende. Some variants 
are quartz monzonite or quartz syenite. Includes bodies of pegmatite and amphibolite too small to be shown.

Microperthite alaskite (Mesoproterozoic) – Pinkish-gray- to buff-weathering, pinkish-white or light-pinkish-gray, medium- 
to coarse-grained, foliated alaskite composed of microcline microperthite, quartz, and oligoclase. Locally contains small 
clots and disseminated grains of magnetite.

Lake Hopatcong Intrusive Suite (Drake and Volkert, 1991)
 
Pyroxene granite (Mesoproterozoic) – Buff- or white-weathering, greenish-gray, medium- to coarse-grained, foliated 
granite containing mesoperthite to microantiperthite, quartz, oligoclase, and clinopyroxene. Common accessory minerals 
include titanite, magnetite, apatite, and sparse pyrite. 

Pyroxene alaskite (Mesoproterozoic) – Buff- or white-weathering, greenish-buff to light pinkish-gray, medium- to coarse-
grained, massive, foliated alaskite composed of mesoperthite to microantiperthite, quartz, oligoclase, and sparse amounts 
of clinopyroxene. Common accessory minerals include titanite, magnetite, and apatite. 

Pyroxene monzonite (Mesoproterozoic) – Gray to buff- or tan-weathering, greenish-gray, medium- to coarse-grained, 
massive, foliated syenite to monzonite. Composed of mesoperthite, microantiperthite to microcline microperthite, oligoclase, 
clinopyroxene, titanite, magnetite, and sparse apatite and quartz. 

Back-arc Basin Supracrustal Rocks

Potassic feldspar gneiss (Mesoproterozoic) – Light-gray- or pinkish-buff-weathering, pinkish-white or light-pinkish-gray, 
medium- to locally coarse-grained, foliated gneiss composed of quartz, microcline microperthite, oligoclase, and varied 
amounts of biotite, garnet, tourmaline, sillimanite, and magnetite. 

Biotite-quartz-feldspar gneiss (Mesoproterozoic) – Gray-weathering, locally rusty, gray, tan, or greenish-gray, medium- 
to coarse-grained, compositionally layered and foliated gneiss containing microcline microperthite, oligoclase, quartz, and 
biotite. Locally contains garnet, tourmaline, sillimanite, and magnetite; graphite and pyrrhotite occur in rusty gneiss. Locally 
interlayered with amphibolite or quartzite too thin to be shown.  

Hornblende-quartz-feldspar gneiss (Mesoproterozoic) – Light-gray- or pinkish-buff-weathering, pinkish-white or 
light-pinkish-gray, medium- to coarse-grained, foliated gneiss composed of quartz, microcline microperthite, oligoclase, 
hornblende, and varied amounts of biotite and magnetite.

Clinopyroxene-quartz-feldspar gneiss (Mesoproterozoic) – Pinkish-gray- or pinkish-buff- weathering, white, pale-
pinkish-white, or light-gray, medium- to coarse-grained, foliated gneiss composed of quartz, microcline, oligoclase, 
clinopyroxene, and local epidote, biotite, titanite, and magnetite. 

Pyroxene gneiss (Mesoproterozoic) – White- or tan-weathering, greenish-gray, fine- to medium-grained, compositionally 
layered and foliated gneiss containing oligoclase and clinopyroxene. Quartz content is highly varied. Contains sparse 
amounts of epidote, titanite, scapolite, or calcite. Commonly interlayered with amphibolite and (or) marble, or contains pods 
and layers of clinopyroxene-rich rock mapped as diopsidite. 

Marble (Mesoproterozoic) – White- or light-gray-weathering, white or grayish-white, medium- to coarse-grained, calcitic 
to locally dolomitic marble containing graphite, phlogopite, chondrodite, and clinopyroxene. Contains pods and lenses of 
clinopyroxene-hornblende skarn or scapolite-phlogopite rock. Locally contains relict karst features that include bedrock 
pinnacles, solution openings, and paleo-solution breccia.

Magmatic Arc Rocks
Losee Metamorphic Suite (Drake, 1984; Volkert and Drake, 1999)

Albite-oligoclase alaskite (Mesoproterozoic) – Pale pink, or white-weathering, light-greenish-gray or light-pinkish-green, 
medium to coarse-grained, foliated rock composed of albite or oligoclase, quartz, and variable amounts of hornblende, 
augite and magnetite. Locally contains rutile. Commonly contains conformable layers of amphibolite. 

Quartz-oligoclase gneiss (Mesoproterozoic) – White-weathering, light-greenish-gray, medium- to coarse-grained, foliated 
gneiss composed of oligoclase or andesine, quartz, and varied amounts of hornblende, biotite, and (or) clinopyroxene. 
Locally contains thin layers of amphibolite.  

Biotite-quartz-oligoclase gneiss (Mesoproterozoic) – White- or light-gray-weathering, medium-gray or greenish-gray, 
medium- to coarse-grained, foliated gneiss composed of oligoclase or andesine, quartz, biotite, and local garnet. Some 
outcrops contain minor amounts of hornblende. 

Hornblende-quartz-oligoclase gneiss (Mesoproterozoic) – White- or light-gray-weathering, greenish-gray, medium- to 
coarse-grained, foliated gneiss composed of oligoclase or andesine, quartz, hornblende, and magnetite. Some outcrops 
contain minor clinopyroxene. 

Hypersthene-quartz-plagioclase gneiss (Mesoproterozoic) – Gray- or tan-weathering, greenish-gray or greenish-brown, 
medium-grained foliated gneiss composed of andesine or oligoclase, quartz, clinopyroxene, hornblende, and hypersthene. 
Commonly contains thin layers of amphibolite and (or) mafic quartz-plagioclase gneiss.  

Other Rocks

Amphibolite (Mesoproterozoic) – Grayish-black, fine- to medium-grained, foliated rock composed of hornblende and 
andesine. Some amphibolite contains biotite and (or) clinopyroxene. Most of the unit is interpreted to be metavolcanic, 
although some of it layered with metasedimentary rocks may be metasedimentary. All types are undifferentiated on the map.

Microantiperthite alaskite (Mesoproterozoic) – Tan- to buff-weathering, light-greenish-gray, medium- to coarse-grained, 
massive, indistinctly foliated alaskite composed of microantiperthite, brown rust-stained quartz, and oligoclase. Locally 
contains minor amounts of biotite, hornblende, altered clinopyroxene, and magnetite. 

Microantiperthite granite (Mesoproterozoic) – Tan- to buff-weathering, light-greenish-gray, medium- to coarse-grained, 
massive, indistinctly foliated granite composed of microantiperthite to microperthite, quartz that is locally brown rust-
stained, oligoclase, and hornblende. Locally contains minor amounts of biotite, altered clinopyroxene, and magnetite. Unit 
is tentatively interpreted to be petrogenetically related to intrusive rocks of the Byram and Lake Hopatcong Suites.

Anatectite (Mesoproterozoic) – Pinkish-gray- or pinkish-buff-weathering, white, pale-pinkish-white, or light-gray, coarse- to 
very coarse-grained, moderately foliated rock composed of quartz, microcline, oligoclase, clinopyroxene, and trace amounts 
of epidote, biotite, titanite, and magnetite. Unit is interpreted to represent large-scale partial melting of clinopyroxene-quartz-
feldspar gneiss because large bodies of foliated, coarse-grained rocks of similar composition are spatially associated with 
this gneiss elsewhere in the New Jersey Highlands, in the Wawayanda, Stanhope, Dover, and Belvidere quadrangles.

Diopsidite (Mesoproterozoic) – Dark grayish-green-weathering, light- to medium-green, medium-grained, nearly 
monomineralic rock composed of clinopyroxene (diopside). Unit is typically thin and discontinuous over distances of a few 
hundred ft. Commonly spatially associated with, or interlayered with, pyroxene gneiss.

Skarn (Mesoproterozoic) – Dark green to black, medium- to very-coarse-grained, weakly foliated to undeformed rock 
composed of hornblende, clinopyroxene and sparse local epidote.Formed by the metasomatic alteration of rocks that were 
originally carbonate-bearing. At West Portal unit is intruded by abundant quartz-microcline-albite pegmatite and spatially 
associated with quartz-tourmaline rock with locally developed symplectic texture.

Mesoproterozoic rocks, undifferentiated – Shown only in cross section.
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Figure 1: Contour plots and rose diagrams showing dip direction of bedding planes (fig.1a) joint planes (1b), and cleavage planes (1c) 
within the Hardyston through Martinsburg Formations and showing dip direction of foliation in Proterozoic rocks (1d). N is the number of 
readings used in the diagram. 

Figure 1a

Figure 1c

Contact - approximately located; dotted where concealed.

Faults - solid where well located; dashed where approximately located.

     Normal fault - U, upthrown side; D, downthrown side.

     Inclined thrust fault - teeth on upper plate.
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