

New Jersey Geological Survey Technical Memorandum 89-1

ANNUAL SUMMARY OF PHYTOPLANKTON BLOOMS AND RELATED CONDITIONS IN NEW JERSEY COASTAL WATERS, SUMMER OF 1988

New Jersey Department of Environmental Protection Division of Water Resources

1989

STATE OF NEW JERSEY Thomas H. Kean, Governor

Department of Environmental Protection Christopher J. Daggett, Commissioner

Division of Water Resources Jorge H. Berkowitz, Acting Director

Geological Survey Haig F. Kasabach, State Geologist New Jersey Geological Survey Technical Memorandum 89-1

ANNUAL SUMMARY OF PHYTOPLANKTON BLOOMS AND RELATED CONDITIONS IN NEW JERSEY COASTAL WATERS, SUMMER OF 1988

by Paul Olsen and Barbara Kurtz

New Jersey Department of Environmental Protection Division of Water Resources Geological Survey CN-029 Trenton, New Jersey 08625

1989

New Jersey Geological Survey Technical Memorandums are brief reports prepared for timely response to issues of concern. This memorandum may be quoted provided that the following format is used:

Quoted excerpt (in quotation marks), New Jersey Geological Survey Technical Memorandum 89-1, Olsen and Kurtz, 1989.

Use of brand, commercial, or trade names is for identification purposes only and does not constitute endorsement by the New Jersey Geological Survey.

CONTENTS

Synopsis	•			•	• •		•	•	•	•	•	 •		•	•	•	•		•	•	 	•	•	•	•	•	•	 •	٠	•	•	. 1	L
Introduction	•				• •		•	•				 •			•	•	•		•		 		•	•	•	•	•	 •	•	•		. 1	l
Acknowledgments											•			•	•	•	•	 •	•	•	 			•	•	•	•	 •	•	•	•	. :	3
Methods																																	
Results and discussion												 •	•								 				•		•	 •				. 4	4
References	•	•		•	• •		•					 •	•	•	•	•	•		•	•	 	•		•	•	•	•	 •	۰.	•	•	. 9)

FIGURES

	1. New Jersey coast station locations, Sandy Hook to Cape May
	for the 1988 summer season
	3. Seasonal changes in chlorophyll a concentrations at New Jersey northern coastal,
٠	southern coastal, and estuarine stations in the 1988 survey
	4. Seasonal changes in surf and offshore temperatures

APPENDIX

Table	1. Chlorophyll a data for the 1988 New Jersey coastal phytoplankton survey
	2. Succession of dominant phytoplankton species found in the 1988 survey
	3. Frequency of occurrence in samples of common phytoflagellate species at selected
	locations along the New Jersey coast for the period May 24 to September 14, 1988 14
	4. New Jersey coastal water conditions, summer of 1988 highlights and reported incidents 16
	5. Summary of 1988 ocean temperature and weather data

Annual Summary of Phytoplankton Blooms and Related Conditions in New Jersey Coastal Waters, Summer of 1988

by

Paul Olsen and Barbara Kurtz

Synopsis

Phytoplankton data and related water quality conditions are presented for the current NJDEP/USEPA cooperative New York Bight water-quality Survey. As in the few years previous to 1988, red tides in our northern shore area were confined principally to the Hudson/Raritan estuary, however, their intensity and duration were somewhat greater in 1988. In the coastal sector, although no extensive red tide blooms have occurred since 1985, cool water conditions and consequent diatom blooms were unusually persistent in summer of 1988. The diatom Ceratauling sp. bloomed initially in late May in Raritan Bay and subsequently over the entire New Jersey coast; resultant accumulations of brown foam were scattered over much of the NJ northern shore. At this time, neritic dinoflagellates, including Ceratium sp., were also abundant in samples taken off Ocean County. No other diatom blooms resulted in nuisance conditions. Phytoflagellate red tides dominated by Olisthodiscus, Katodinium, Prorocentrum and Eutreptia sp. occurred in the northern estuarine area in June and continued intermittently through early August; these were most intense along the Raritan - Sandy Hook Bay south shore in the Keansburg vicinity. Analysis for chlorophyll a (initiated by our laboratory this year) revealed a high maximum value of 277 mg/m_1^3 in these samples. Dead fish and shellfish, primarily demersal species (flounder, sea robins, crabs, etc.) were observed washing ashore downbay of Keansburg in late June and again in early August. Analysis of water samples collected by EPA indicated that hypoxia may have caused the fish kills. Helicopter surveillance for floatable debris (initiated by the NJDEP this year) revealed trash, wood and natural materials at scattered locations in Lower New York Bay, occasionally extending to adjacent New Jersey waters. Isolated red tide blooms were observed a few different times off Asbury Park, Atlantic City, and the Delaware Bay cape shore. The Delaware Bay location, newly established as a sampling site, had the highest mean chlorophyll a level (81 mg/m³) of all stations regularly sampled. Brown water blooms, persisting again in Barnegat Bay (also recently established as a sampling area), were densest in southern reaches of the bay. The presence of the "brown tide" organism, Aureococcus sp., in New Jersey was confirmed, although Nannochloris sp. is still considered the dominant phytoplankter in this region. Along the NJ coast, southwesterly winds sustained onwellings resulting in unusually cool surf temperatures through most of July and August 1988. USEPA data revealed that nearshore bottom dissolved oxygen concentrations were generally above minimum levels (about 4.0 mg/l) necessary to support most marine life. Red tide blooms were minimal and several diatom species, including Skeletonema and Thalassiosira sp., dominated the phytoplankton throughout most of summer.

Introduction

Red tides caused by blooms of various phytoplankton (mostly dinoflagellate) species have recurred periodically in New Jersey estuarine and coastal waters. Recorded earliest in Delaware Bay in 1928 (Martin and Nelson, 1929) were localized blooms dominated by *Amphidinium fusiforme* and *Gymnodinium splendens*. Martin (1929) also mentioned dense blooms of *G. splendens* in Barnegat Bay. Records of events, however, have become more numerous during the past 30 years; events occurred primarily in the Hudson/Raritan estuary and adjacent New Jersey northern coastal waters at least as far south as Belmar (figure 1). Most of the blooms were dominated by *Olisthodiscus luteus* and *Katodinium rotundatum* (Mahoney and McLaughlin, 1977). Usually localized, these blooms have recurred annually since the early 1960's. Fortunately, none of the species were of the acutely toxic varieties, although there were occasional fishkills due to anoxia when blooms collapsed (Ogren and Chess, 1969; Young, 1974). Gonyaulax tamarensis, causative agent of paralytic shellfish poisoning (PSP) in the northeast U.S. and Canada, has been found in New Jersey but in very low concentrations (Cohn et al., 1988). A few blooms of Prorocentrum micans, however (most extensively in 1968), were associated with mild respiratory discomfort to bathers (Mahoney and McLaughlin, 1977). In response to the 1968 event. State and Federal agencies initiated an investigation of the problem. In 1969, the Interagency Committee on Marine Plankton Blooms was formed and has functioned to coordinate government response in the event of serious blooms (see USEPA, 1978-88 inclusive). In 1973 the New Jersey Department of Environmental Protection (DEP) and the National Marine Fisheries Service (NMFS), Sandy Hook Laboratory, cooperatively instituted an intensive phytoplankton study in the region most affected by the red tides (Olsen and Cohn, 1979).

Red tides observed in the region were generally estuarine in nature until 1976 when a massive bloom (of Ceratium tripos) occurred offshore in the New York Bight, resulting in widespread anoxia and consequent fishkills (Swanson and Sindermann, 1979). Another interagency group, the New York Bight Advisory Committee, was formed to respond to this and subsequent hypoxia problems, none of which became as serious as the 1976 event. In 1977, seasonal helicopter surveillance and sampling in the New Jersey northern coastal region was instituted by the USEPA, Region II, cooperatively with the NJDEP. In 1978 other major blooms occurred within the Bight and adjacent shelf waters. In the greater Atlantic City area, a milky brown discoloration caused by Dinophysis acuta (Figley, 1979) constituted the first recorded red tide in southern New Jersey coastal waters. Also in 1978, the diatom Coscinodiscus walesii caused clogging of fishermen's nets throughout an extensive area off Delaware Bay and southward (Mahoney and Steimle, 1980). The only other diatom causing similar nuisance conditions was Cerataulina pelagica, which bloomed more recently along much of the New Jersey coast (USEPA, 1987-88, inc.). In 1984-85 conspicuous "green tides" occurred along the south-central NJ coast; the causative species was identified as Gyrodinium aureolum, an unarmored dinophycean. An intensive study was initiated to investigate causes of these blooms (USEPA,

> 15 +)

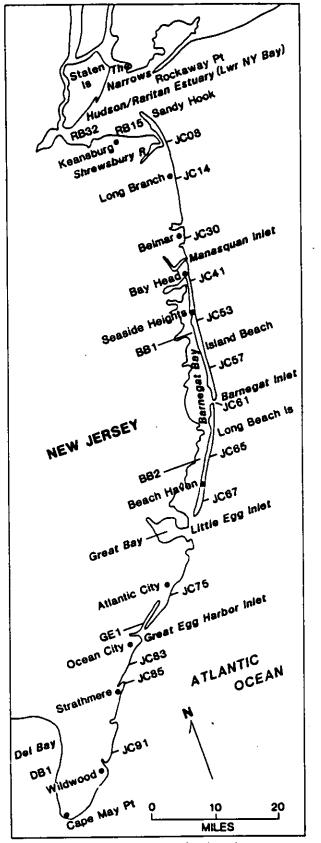


Figure 1. New Jersey coast station locations, Sandy Hook to Cape May.

1986a) and routine helicopter sampling was extended to include the coastal sector from Barnegat Inlet to Cape May (figure 1).

While the red tides in the region were composed mainly of phytoflagellates, considerably smaller (primarily chlorophycean) forms were found, as early as the 1950's, to be dominant and responsible for greenish water discoloration (Ryther, 1954; Patten, 1962); these were minute coccoid species identified initially as Nannochloris atomus. Although N. atomus was apparently most abundant in the Hudson/Raritan estuary and adjacent coastal areas, in 1985 extensive blooms of this species were observed offshore in the New York Bight and southward along the New Jersey coast, overlapping the area of the dinoflagellate green tides (USEPA, 1986). Also in 1985, brownish-water conditions due apparently to N. atomus were noted in coastal emfirst in Barnegat Bay and bayments. subsequently southward at least to Great Egg Harbor. This coincided with the occurrence of the "brown tides" of a previously unidentified species (Aureococcus anophagefferens) which devastated eelgrass beds and economically important shellfisheries in Rhode Island and eastern Long Island, NY embayments (Cosper et al., 1987; Sieburth et al., 1988).

In the present report, phytoplankton data and related water conditions are presented for the New Jersey coastal region, summer of 1988. This year, sampling for chlorophyll a analysis was instituted and nutrient analyses were deleted from the routine schedule. Sampling stations were added in Barnegat Bay and Delaware Bay and a few coastal locations were changed from those previously sampled. Results are obtained cooperatively with the USEPA, Region II, and complement the physicochemical and bacteriological data also gathered during the annual New York Bight Water Quality Survey (USEPA, 1978-88, inc.). Other surveys gathering bacteriological data include the DEP Marine Water Classification (shellfish control) Program, and the Coastal Cooperative Monitoring (bathing water quality) Program of DEP and the shore county health agencies (NJDEP, 1988a and b). In 1988, additional helicopter surveillance of the Hudson/Raritan Estuary and New Jersey coastline for floatable debris was initiated by the NJDEP. Also, a cruise on the EPA ocean survey vessel, the P.M. Anderson, was undertaken to investigate another possible bight-wide Ceratium bloom.

Acknowledgements

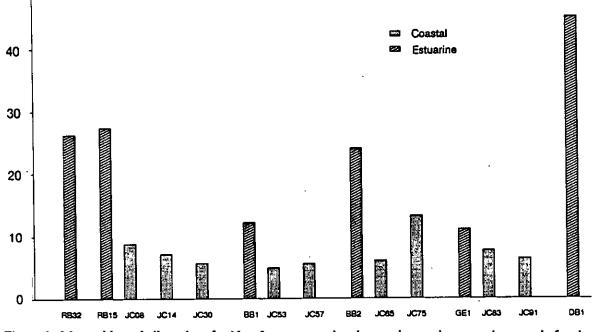
Field collections were made primarily by personnel of the USEPA, Region II, helicopter surveillance unit. Analysis of samples for chlorophyll *a* was performed by John Kurtz.

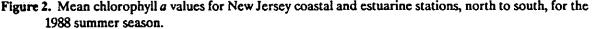
Methods

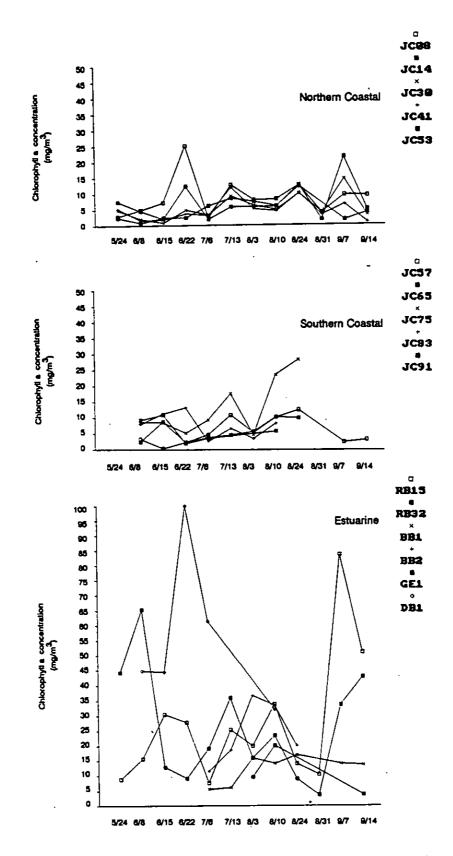
The basic sampling scheme includes twelve sites selected from the New Jersey coast - Raritan estuary component of the EPA New York Bight sampling network (figure 1). In 1988 stations JC08, JC14, JC41, JC53 and JC91 were added and JC05, JC11, JC21, JC49 and JC93, from previous years, were deleted. To supplement the basic scheme, additional sites were introduced in the central and southern bays and estuaries; these included Barnegat Bay (BB1 and BB2), Delaware Bay (DB1) and Great Egg Harbor (GE1). Frequency of collection is weekly from May to September, when weather permits; exceptions occur when the helicopter is detained for maintenance or other reasons. Sampling is done by Kemmerer from helicopter. Because these waters are generally shallow and well-mixed, surface samples taken at a 1m depth are considered representative; coastal samples are taken just outside the surf zone. Clear plastic cubitainers holding approximately one liter are employed for chlorophyll a and phytoplankton analysis. These are refrigerated in a closed container and delivered to the DEP Biomonitoring Laboratory, usually within 24 hours. Field collections are made in accordance with DEP standard procedures (NJDEP, 1987). On occasion, special phytoflagellate samples taken for qualitative purposes are maintained at in-situ temperatures. Samples not examined within 24 hours of collection are preserved with Lugol's Solution at one drop per 100ml or more as necessary to maintain weak tea color. Analysis for chlorophyll a is performed by the in-vitro method as described in USEPA (1973) after Strickland and Parsons (1968). Water-column aliquots are first filtered through a 0.45μ m membrane (Millipore apparatus), the chlorophyll is then extracted by

grinding the filter in 90% acetone/MgCO₃ solution. Processed samples are refrigerated for at least two hours, then centrifuged (20 minutes at 1500 RPM, 500g) and their optical density measured in a Perkin-Elmer Lambda 3 spectrophotometer. Equations for conversion to chlorophyll a are taken from UNESCO (1966). Methods for phytoplankton community analysis are based on SCOR (1974); this essentially uti-

lizes the Sedgewick-Rafter and Palmer-Maloney strip and random field techniques, counting cells as small as 2µm. A comprehensive reference list for phytoplankton identification is given in Olsen and Cohn (1979).


Results and Discussion


Chlorophyll a data are shown in table 1 (appendix); mean concentrations and seasonal changes are shown in figures 2 and 3. Estuarine concentrations were generally much higher than those in coastal waters. The highest value observed in routine sampling (220 mg/m³) was at the Delaware Bay cape shore site (DB1); notably, this station also had the highest mean chlorophyll level (80 mg/m³) of all stations regularly sampled. Mean chlorophyll levels in Raritan -Sandy Hook Bay (RB32 and RB15) and in Barnegat Bay (BB2) were generally between 20 and 30 mg/m³. The highest single value observed (277 mg/m³) occurred during a dense phytoflagellate red tide in Raritan Bay at a site not routinely sampled (table 1). Chlorophyll a levels in the Raritan - Sandy Hook estuary exceeded 40 mg/m³ on several occasions at the routine stations during phytoflagellate and/or diatom


NORTH

50

blooms. In Barnegat Bay, where the blooms were dominated by picoplankton (minute cells about 1µm to 3µm is size, chlorophyll a levels remained between 20 and 40 in the southern section (BB2) and between 10 mg/m³ and 20 mg/m³ in the northern section (BB1). In coastal areas, more uniformity was exhibited with lower chlorophyll a values at the several stations, and peaks usually occurring simultaneously along the entire coastline (figure 3); this suggests neritic or offshore, rather than estuarine, influence, especially in the segment from JC30 to JC65 (figure 1). North and south of this segment, highest levels (between 20) and 30 mg/m³) in coastal locations occurred during periods of diatom and phytoflagellate activity (along the northern shore as far south as JC14 (Long Branch) on June 22 and September 7 and at Atlantic City (JC75) on August 10 and 24). The tendency toward higher chlorophyll levels SOUTH

ļ

ł

Figure 3. Seasonal changes in chlorophyll *a* concentrations at New Jersey northern coastal, southern coastal, and estuarine stations in the 1988 survey.

and bloom activity at these stations may reflect some estuarine influence in these areas.

Frequency of occurrence and succession of dominant species at routine stations is shown in tables 2 and 3 (appendix). The early spring period (May 24 - June 8) was characterized by the occurrence of a bloom of the diatom, Cerataulina pelagica in late May, initially at RB32 and subsequently at all coastal stations. Nuisance conditions of brown flocculent material (or foam) along much of the NJ shore (table 4) were associated with the C. pelagica bloom. During this period Prorocentrum minimum also bloomed in Raritan Bay and neritic dinoflagellates including Ceratium spp., Dinophysis acuta, and Prorocentrum micans were abundant in coastal samples taken off Ocean County. Phytoflagellate blooms of Olisthodiscus luteus occurred in early June from RB32 to JC14 causing red water in Raritan - Sandy Hook Bay. In late June, a red tide dominated by O. luteus, Katodinium rotundatum, and a euglenoid, Eutreptia lanowii, developed along the south shore in the vicinity of Keansburg (an area not routinely sampled). In late June many dead fish, primarily demersal species (sea robins, flounder, crabs, etc.) were observed downbay of Keansburg from the Earle Pier to Highlands (table 4). This incident was reported through the Monmouth County Health Department, the DEP Division of Fish, Game and Wildlife, and the NMFS, Sandy Hook Lab. The fish kill was attributed to localized hypoxia created by wind and tidal concentration of decomposing phytoplankton (from blooms) and other detrital material in the south-central portion of Sandy Hook Bay. During this period several diatom species primarily Skeletonema Cyclotella Thalassiosira costatum, sp., nordenskioldii and Nitzschia sp. bloomed in the eastern section of Sandy Hook Bay (RB15) (table 2); abundance of the euglenoid, E. Lanowii was also noted at RB15 while a bloom of this species occurred simultaneously off Ocean City (JC83). Through June, the diatom, Cerataulina pelagica, remained abundant at a few coastal locations. Thalassionema nitzschioides was abundant at southern coastal stations. At the Delaware Bay cape shore site (DB1), although sampling here ended in midsummer, a succession of many diatoms and flagellates was seen with several species abundant. This culminated in late June - early July with a red-water bloom of Gyrodinium estuariale; Prorocentrum micans was also abundant in that locale (tables 2 and 3).

In the midsummer period (July 6 - August 10), red tides of P. minimum and E. lanowii continued in Raritan - Sandy Hook Bay, while several diatom species, including Leptocylindrus danicus. S. costatum, and Nitzschia sp. (table 2) were abundant both in the estuary and in coastal waters. None of these coastal blooms produced noticeable water discoloration. Minute coccoid species in the "picoplankton" size range (to 3µm), primarily Nannochloris atomus, were abundant throughout the survey range with blooms at many locations. Coastal water temperatures were usually cool, e.g. $< 70 F^{\circ}$ for most of July and $< 60F^{\circ}$ for most of August (figure 4), probably the result of persistent southwesterly winds. This likely precluded major phytoflagellate blooms and resulted in the dominance of diatoms throughout the summer. Late summer diatom blooms occurred at northern estuarine and coastal stations (table 2). Flagellate red tides continued in the Sandy Hook Bay south-shore area. Special samples collected at this time revealed the dominance in the blooms of Krotundatum, E. lanowii, and Prorocentrum triestinum (redfieldi). Reports of dead fish in the vicinity of Keansburg were received again in early August. Samples taken on August 4 by the EPA indicated that hypoxia caused the fish kills.

In Barnegat Bay the picoplankton bloom, responsible for brownish water discoloration during the previous three summers, was seen again in 1988. Bloom levels ($> 10^5$ cells ml⁻¹) were first observed in mid-July and continued through September. Cell concentrations were densest and most persistent in the southern section of the bay (BB2) where the salinity regime is generally higher than in the northern section (Chizmadia et al., 1984). The presence in Barnegat Bay of the "brown tide" species, newly identified as Aureococcus anophagefferens (Sieburth et al., 1988), was confirmed this year in samples sent to the Woods Hole Oceanographic Institution for analysis using a special immunofluorescent technique (D. Anderson, personal communication). This species constituted as much as 7.5% of the picoplankton in samples with total counts exceeding 10⁶ml⁻¹ from lower Barnegat Bay. Although total cell densities were comparable to those that devastated the scallop fishery and eelgrass beds in Long Island, NY embayments (Cosper et al., 1987) the proportion of Aureococcus was considerably lower. Thus far, effects on

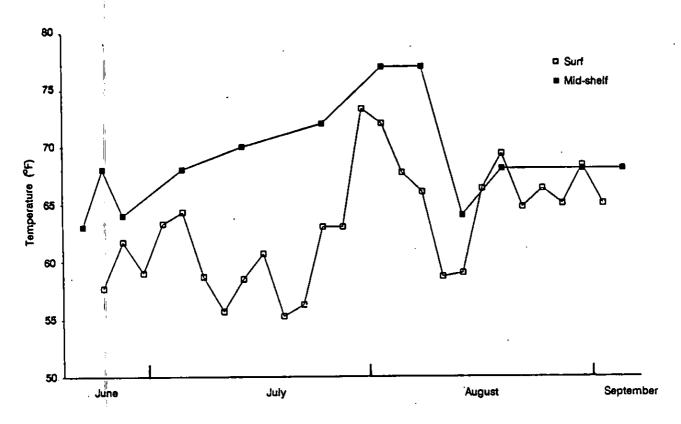


Figure 4. Seasonal changes in surf and offshore temperatures (°F). Surf temperatures at Island Beach State Park; mean temperatures for 3-day intervals from June 21 to September 5, 1988. Offshore mid-shelf surface isotherm at weekly intervals from NOAA satellite.

New Jersey's shellfish (primarily the hard clam) and other resources have not been documented. Nannochloris atomus is still considered the dominant species in this region. The only serious red tide recorded in Barnegat Bay occurred in 1964 (Mountford, 1965) dominated by a dinoflagellate, Cochlodinium heterolabatum (Silva, 1967).

Certain sampling locations, particularly estuarine stations RB15 and DB1 and coastal stations JC14 and JC75 (subject to considerable marine influence), exhibited more phytoflagellate activity than others (table 3). Mean chlorophyll a values also were higher at these stations (figure 2). The greater frequency and variety of these species (including some historically responsible for red tides) is due primarily to higher nutrient concentrations as well as the affinity of many phytoflagellates for lower salinity regimes. A late spring bloom of Olisthodiscus luteus produced red water at Raritan Bay station RB32 (tables 2, 4); the concurrent abundance of this species at station JC14 (Long Branch) reflects the influence of the Hudson/Raritan estuary along the New Jersey northern shore. Similarly, in the southern NJ. shore, although major red tides have appeared much less frequently than in the region of Hudson/Raritan influence, there was relatively high phytoflagellate incidence at JC75 (Atlantic City). Within a 25-mile stretch of coastline, with Atlantic City approximately in the center, there are four inlets (Little Egg to Great Egg Harbor, figure 1); discharge from local estuaries and embayments, is greater than in any equivalent length of the NJ coast. In Delaware Bay (DB1 vicinity) the recurrent blooms have apparently been localized and benign, providing sustenance for the valuable ovster fishery there (Pomeroy et al., 1956). From our 1988 samples. a rich and diverse phytoplankton flora is evident in this region. Conversely, at some coastal stations, especially off Ocean County (JC30 to JC65), the greater frequency and abundance of diatoms over flagellates (table 2) reflects neritic influence in the NJ central shore region. Larger dinoflagellates such as Ceratium and Dinophysis spp., representative of the nearshore ocean environment (Figley, 1979), were abundant during an apparent upwelling event which also carried in remnants of the late spring diatom bloom of Cerataulina pelagica (tables 2 and 4). Extensive sampling of the New York Bight conducted on the June-28-to-July-1 Anderson cruise revealed substantial concentrations of *Ceratium* and *Dinophysis* spp. offshore in various areas and at certain depths (USEPA data, unpublished). These cell densities, however, were considerably lower than those observed during the 1976 event (Swanson and Sindermann, 1979), thus the 1988 data may reflect normal seasonal maxima.

In New Jersey coastal waters, red tide formation is strongly dependent on weather and nearshore circulation patterns (in USEPA, 1986a). Inorganic nutrients are usually present, especially in the northern estuarine and coastal region. Blooms often develop in sheltered situations such as the confines of bays and estuaries and, via tidal currents, may spread to adjacent coastal areas (USEPA, 1978-88, inc.). In open waters such as those of the New York Bight, however, weather conditions must be quiescent, as well as warm, with moderate onshore winds or converging water masses acting to concentrate the phytoplankton (Pomeroy et al., 1956). Upwelling, typically driven by southwesterly winds, is common along the New Jersey coastline (Ingham and Eberwine, 1984); this can carry in nutrient-rich water, but the accompanying drop in water temperatures may not be favorable for most phytoflagellates. This apparently was the case in 1988 when southwest winds prevailed through most of summer (table 5). While this apparently enhanced flagellate blooms in the major estuaries, diatoms dominated the coastal phytoplankton, and "seaweed" in the form of macroalgae (primarily Ulva sp.) was prevalent along the surfline (table 4). Nearshore bottom dissolved-oxygen concentrations were generally favorable for most marine life (4.0 mg/l or greater) during most of summer (R. Braun, USEPA, personal communication). Surf temperatures at Island Beach were below 60°F

. .

(16°C) during much of July and exceeded 70°F (22°C) for only one brief period from July 31 to August 3. The most prominent upwelling(s) occurred between August 4 and 16, with surf temperature again going below 60°F, including a drop of more than 18°F (10°C) within a six-day period (table 5). The previous year (1987) had seen very warm and clear, Gulfstream-like water adjacent to the NJ coast from July 10 through August 17 with surf temperatures at times exceeding 75°F. Although no red tides occurred, the presence of small invertebrates (salps, amphipods) characteristic of warm and/or pelagic waters was noted as creating a nuisance in several locales (USEPA, 1988). Conditions such as these were not observed in 1988.

The death of bottlenose dophins (Tursiops truncatus), many of which washed ashore from New Jersey to Virginia in 1987 (USEPA, 1988), has been associated with phytoplankton-derived neurotoxin in fishes which the dolphins consumed (Geraci, 1989). Kills of menhaden, spanish mackerel, and other fishes due to toxic dinoflagellate blooms of Ptychodiscus brevis have occurred on Florida's Gulf coast (Ingle and deSilva, 1955). On rare occasion the blooms have been transported by the Gulfstream to the Atlantic side; thus in 1987 bloom(s) of P. brevis occurred as far north as the southern coast of North Carolina (Tester et al., 1988). Dolphin deaths occurred along the US eastern and Gulf coasts again in 1988 (Cassidy et al., 1988), but none were reported in New Jersey. On the Atlantic coast the dolphins' migratory route ranges far north of the bloom area. Although P. brevis occurred as close as North Carolina, the species has never been detected in our phytoplankton surveillance of New Jersey coastal waters.

8

- Cassidy, D.R., A.J. Davis, A.L. Jenny and D.A. Saari, 1988. Pathology of the diseased dolphins. *In* Marine Technology Society, IEEE, Oceans '88 conference Proceedings, pp. 812-814. Baltimore, MD. Oct. 31 - Nov. 2, 1988.
- Chizmadia, P.A., M.J. Kennish and V.L. Ohori. 1984. Physical description of Barnegat Bay. Ch. 1. In: Ecology of Barnegat Bay, New Jersey. M.J. Kennish and R.A. Lutz, eds. Springer-Verlag, N.Y.
- Cohn, M.S., P. Olsen, J.B. Mahoney and E. Feerst. 1988. Occurrence of the dinoflagellate, *Gonyaulax tamarensis* in New Jersey. Bull. N.J. Acad. Sci. 33:45-49.
- Cosper, E.M., W.C. Dennison, E.J. Carpenter, V.M. Bricelj, J.G. Mitchell, S.H. Kuenster, D. Culflesh and M. Dewey. 1987. Recurrent and persistent brown tide blooms perturb coastal marine ecosystem. Estuaries 10(4):284-290.
- Figley, W. 1979. Biochemical monitoring of New Jersey's nearshore ocean waters: June, 1972 to June, 1978. New Jersey Tech. Rept. No. 42M. N.J. Dept. Environ. Prot., Nacote Creek Res. Sta. Absecon, N.J., 171pp.
- Geraci, J.R. 1989. Investigation of the 1987-1989 mass mortality of bottlenose dolphins along the U.S. central and south Atlantic coasts. Final report to the National Marine Fisheries Service and U.S. Navy, Office of Naval Research and Marine Mammal Commission. Washington, D.C. 44pp.
- Ingham, M.C. and J. Eberwine. 1984. Evidence of nearshore summer upwelling off Atlantic City, New Jersey. NOAA Tech. Memo. NMFS-F/NEC-31. U.S. Dept. of Comm. 10pp.
- Ingle, R.M. and D.P. de Sylva. 1955. The Red Tide. Fla. State Board Conser. Educ. Ser. No. 1. 30pp.
- Mahoney, J.B. and J.J.A. McLaughlin, 1977. The Association of phytoflagellate blooms in Lower New York Bay with hypertrophication. J. Exp. Mar. Biol. Ecol. 28:53-65.
- Mahoney, J.B. and F.W. Steimle, Jr. 1980. Possible association of fishing gear clogging with

a diatom bloom in the Middle Atlantic Bight. Buil. N.J. Acad. Sci. 25(1):18-21.

- Martin, G.W. 1929. Dinoflagellates from marine and brackish waters in New Jersey. Univ. Iowa Studies in Nat. Hist. XIII (9), 32pp.
- Martin, G.W. and T.C. Nelson. 1929. Swarming of dinoflagellates in Delaware Bay, New Jersey. Bot. Gazette 88:218-224.
- Mountford, K. 1965. A Late summer red tide in Barnegat Bay, New Jersey. Underwater Natur. 3:32-34.
- Mountford, K. 1971. Plankton studies in Barnegat Bay. Rutgers Univ. PhD. thesis, 147pp.
- New Jersey Department of Environmental Protection (NJDEP). 1987. Field procedures manual for water data acquisition. Div. of Water Res. Trenton, 106pp and appendices.
- New Jersey Department of Environmental Protection. 1988a. The Cooperative coastal monitoring program, 1987. Div. of Water Res. Bur. Monitoring Mgt. Trenton, 50pp.
- New Jersey Department of Environmental Protection. 1988b. Shellfish growing water classification charts. Div. Water Res. Bur. Marine Class. and Anal., Leeds Point, NJ.
- Ogren, L. and J. Chess. 1969. A Marine kill on New Jersey wrecks. Underwater Natur. 6:4-12.
- Olsen, P. and M.S. Cohn. 1979. Phytoplankton in Lower New York Bay and adjacent New Jersey estuarine and coastal areas. Bull. N.J. Acad. Sci. 24:59-70.
- Patten, B.C. 1962. Species diversity in net phytoplankton of Raritan Bay. J. Mar. Res. 20:57-75.
- Pomeroy, L.R., H.H. Haskin and R.A. Ragotzkie. 1956. Obserations on dinoflagellate blooms. Limnol. and Oceanogr. 1:54-60.
- Ryther, J. 1954. Ecology of phytoplankton . blooms in Moriches and Great South Bay. Biol. Bull. 106:198-209.
- Scientific Committee on Oceanic Research (SCOR), Working Group 33. 1974. A Review of methods used for quantitative phy-

toplankton studies. UNESCO Tech. Pap. in Marine Science, No. 18, 27pp.

- Sieburth, J. McN., P.W. Johnson and P.E. Hargraves. 1988. Characterization of Aureococcus anophagefferens gen. et. sp. nov. (Chrysophyceae): The bloom in Narragansett Bay, Rhode Island. J. Phycol. 24:416-425.
- Silva, E.S. 1967. Cochlodinium heterolobatum n. sp. - Structure and some cytophysiological aspects. J. Protozool. 14:745-754.
- Strickland, J.D.H. and T.R. Parsons. 1968. A Practical handbook of seawater analysis. Fish. Res. Board of Canada, Bull. No. 167, 311pp.
- Swanson, R.L. and C.J. Sindermann (eds.). 1979. Oxygen depletion and associated benthic mortalities in the New York Bight, 1976. NOAA Prof. Pap. No. 11. Rockville, MD., 345pp.
- Tester, P.A., R.P. Stumpf and P.K. Fowler. 1988. Red Tide, the first occurrence in North Carolina waters, an overview. In: Marine Technology Society, IEEE. Oceans '88 Conference Proceedings, pp. 808-811. Baltimore, MD. Oct. 31 - Nov. 2, 1988.

- United Nations Educational, Scientific and Cultural Organization (UNESCO). 1966. Monographs on oceanographic methodology. 1. Determination of photosynthetic pigments in sea water. Paris, 69pp.
- U.S. Environmental Protection Agency (EPA). 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents. EPA-670/4-73-001. Cincinnati, O.C.I. Weber, ed.
- U.S. Environmental Protection Agency. 1978-1988 (inclusive). New York Bight water quality annual reports, summers of 1977-1987 (inc.). Region II, Surveillance and Monitoring Branch, Edison, NJ.
- U.S. Environmental Protection Agency (EPA). 1986a. An Environmental inventory of the New Jersey coast/New York Bight relevant to green tide occurrence. Prepared by Science Applications International Corp. for USEPA, Region II, New York, NY, 156pp.
- Young, J.S. 1974. A Marine kill in New Jersey coastal waters. Mar. Poll. Bull. 4:70.

Appendix

Table 1. Chlorophyll a data (mg/m³) for the 1988 New Jersey coastal phytoplankton survey

											:			Mean
Station Location	5/24	6/8	<u>6/15</u>	6/22	7/6	7/13	8/3	8/4	<u>8/10</u>	8/24	8/31 ·	9/7	9/14	<u>Chl a</u>
Northern Coastal														
JCO8-Sea Bright	2.85	4.88	7.15	24.98	2.36	12.60	7.92		8.18	12.44	3.91	9.36	9.23	8.82
JC14-Long Branch	7.48	4.51	2.02	12.31	1.87	5.76	5.77		5.90	12.44	1.71	21.28	4.92	7.16
JC30-Spring Lake	4.85	2.02	.83	4.85	3.24	9.11	6.10		4.78	9.96	4	14.37	3.09	5.68
JC41-Bay Head	5.27	1.62	1.90	3.65	3.09	11.88	5.04		4.38	9.94	3.20	6.47	.83	4.77
JC53-Seaside Heights	2.44	.82	2.46	2.41	6.11	8.44	7.34		5.91	12.17		1.64	3.92	4.88
JC57-Island Beach		3.27	.42	2.35	4.74	10.95	5.44		10.25	12.59		2.49	3.24	5.57
Southern Coastal														
JC65-Ship Bottom		2.41	8.78	2.38	3.87	4.67	5.76		10.29	9.98				6.02
JC75-Atlantic City		8.61	8.53	5.20	9.36	17.66	4.67		23.70	28.45				13.27
JC83-Ocean City		7.99	11.32	13.30	2.68	6.67	3.46		8.34					7.68
JC91-North Wildwood		9.29	10.98	2.02	3.69				5.90					6.38
Estuarine														
RB15-Sandy Hook Bay	8.84	15.66	30.50	27.83	7:59	25.34	19.94		33.82	13.99	10.29	83.52	50.99	27.36
RB32-Raritan Bay		65.28					15.93		23.44	8.86	3.62	33.67	42.82	26.23
BB1-Barnegat Bay N.					5.58	6.12	15.85		14.06	16.89		13.98	13.56	12.29
882-Barnegat Bay S.					11.43	18.63	36.60		33.42	20.04				24.02
G81-Great Bay				14.14										14.14
GE1-Great Egg Harbor							9.53		20.12				3.73	11.13
DB1-Delaware Bay cap	eshore	44.71	44.30	220.82	61.38				32.07					80.66
Special Bloom Sample	S													
Raritan Bay														
RB1							34.66							28.58
R82							61.53	-						71.47
RB3							124.49							84.21
RB4								25.14						
RB5								20.92						
RB6								17.42				•		
RB7								23.87						
RB8								33.31						
R89					•			45.12 28.10						
RB10								20.10						277.8
Keansburg				277.85										
Bayshore				146.46	1									146.40

Table 2. Succession of dominant phytoplankton species found in the 1988 survey of New Jersey estuarine - coastal waters. Relative abundance is defined as follows: frequent (.) = concentrations of 100-1000 cells/ml; dominant (+) = cell counts exceeding 1000/ml. Blooms (*) occurred where counts approached or exceeded 10,000/ml, often imparting visible coloration to the water. No designation indicates that the species either was present in very low concentrations or was not observed. For <u>Nannochloris</u>, because of its minute size (<5 microns), the criterion is increased by a factor of ten (e.g. 10,000 for dominance, 100,000 for blooms). All species are listed under one of four taxonomic groups: (1) diatoms = Bacillariophyceae, (2) dinoflagellates = Dinophyceae; (3) other phytoflagellates = Chrysophyceae, Prasinophyceae, Euglenophyceae, Cryptophyceae, etc., (4) nonmotile coccoids = Chlorophyceae

te spring (Nay 24 - June 8) Skelstoneme costatum	ecies/Dates	RB32	RB1		amp <u>4 JC3</u> (-					<u>881 D81</u>
Skeletoneme costatum * </th <th></th>												
Cyclotella sp. + + Thalassiosira sp	•										•	
Thelassiosina sp. * Coscinodiscus sp. * Cerstaulina pelagica * Chaetoceros sp. (sociale) * Thalassionema nitzschioides * Pheedactylum tricornutum * Mitzschia sp. * Prorocentrum minimum * Gyrodinium pellucidum * Katodinium rotundatum * Heterocapsa triquetra * Olisthodiscus luteus * Bipedinomonas sp. (grossii) * Chroomonas sp. (amphioxiea, minuta) * * * Narnochloris atomus * * * Vistashia sp. * ry summer (June 15 - 22) Leptocylindrus sp. * L. danicus * Skeletonema costatum *		_			•		•		-		•	
Coscinodiscus sp. Cerstaulina pelagica * * * * * * * * * * * * * * * * * * *		+	+						•			
Cerstaulina pelagica * * * * * * * * * * * * * * * * * * *										+		
Chaetoceros sp. (sociale) + * * Thalassionema nitzschioides + * Pheedactylum tricornutum * * Nitzschia sp. * * Porocentrum minimum * * Gyrodiniun pellucidum * * Katodiniun rotundatum * * Natodinium rotundatum * * Natodinium rotundatum * * Natodinium rotundatum * * Natodinium sp. * * Olisthodiscus luteus * * Pyramimonas sp. (grossii) * * Chooronas sp. (grossii) * * Choronnas sp. (grossii) * * Choronnas sp. (grossii) * Yammer (June 15 - 22) * * L danicus * * Skeletonema costatum * * Cyclotella sp. * * Thalassiaira sp. * * Thalassioira sp. * * Chaeotoceros sp. * * Thalassionema nitzschioides * * Gyrosigna sp. * * Pheeodactylum tricornutum * Nitzschia sp. * Olisthodiscus luteus * Gyrodinium sp. * Olisthodiscus luteus * Cymodinium sp. * Olisthodiscus luteus * Curpetia lanouli * Curpetia lanouli * Yamodinium s	•			•				•				+
Thalassionema nitzschioides + Pheededctylum tricornutum + Nitzschia sp. + Prorocentrum minimum + Gyrodiniun pellucidum + Katodiniun rotundatum + Katodiniun rotundatum + Heterocapsa triquetra + Olisthodiscus Uteus + Bipedinomonas sp. + Pyraminonas sp. (grossii) + Chroomonas sp. (amphioxice, minuta) + + Chlorella sp. + Vistumer (June 15 - 22) Leptocylindrus sp. + L. danicus + Skeletonema costatum - Cyclotella sp. + T. nordenskioldii + Chaeotoceros sp. + Thalassionema nitzschioides + Gyrosigne sp. + Pheeodectylum tricornutum + Nitzschie sp. * Oprocentrum micans + Gyrodiniun sp. + Olisthodiscus luteus - Curpetia lanowii + Curpetia lanowii + Curpetia lanowii + Curpetia sp. + Chroomonas sp. + Chaeotoceroa sp. + Pheeodectylum tricornutum + Nitzschie sp. + Chaeotoceroa sp. + <td>-</td> <td>*</td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td></td> <td></td>	-	*		+	+	+	+	+		+		
Pheeodactylum tricornutum * Nitzachia sp. * Prorocentrum minimum * Gyrodinium pellucidum * Katodinium rotundatum * Heterocapsa triquetra * Olisthodiscus luteus * Bipedinomonas sp. * Pyraminonas sp. (amphioxice, minuta) * Pyraminonas sp. (amphioxice, minuta) * Pyraminonas sp. (amphioxice, minuta) * Choomonas sp. (amphioxice, minuta) * Pyraminonia atomus * * * Choomonas sp. (amphioxice, minuta) * Warnochloris atomus * * *	•		+						+		+	
Nitzschia sp. Prorecentrum minimum Gyrodinium pellucidum Katodinium rotundatum Heterocapsa triquetra Olisthodiscus luteus * Bipedinomonas sp. (grossii) + Chroomonas sp. (grossii) + Chroomonas sp. (grossii) + Choronias sp. (grossii) + Hanochloris atomus + + - - - - - - - - - - - - -	Thalassionema nitzschioides									+	•	
Prorocentrum minimum Prorocentrum minimum Gyrodinium pellucidum Katodinium rotundatum Katodinium pellucidum Katodinium pellucidum Katodinium pellucidum Katodinium pellucidum Katodinium pellucidum Katodinium stuariale Oproorem sp. Cryptones sp. Pyreminonas sp. Pyreminonas sp. Pyreminonas sp. (amphioxies, minuta) Katodinium stuariale Pyreminonas sp. Parende sp. Pyreminonas sp. Pyreminonas sp. Pyreminonas sp. Pyreminonas sp. Pyreminonas sp. Pyreminonas sp. Pyreminonas sp. Pyreminonas sp. (amphioxies, minuta)	Phaeodactylum tricornutum											+
Gyrodinium pellucidum Katodinium rotundatum Heterocapsa triquetra Olisthodiscus luteus Bipedinomonas sp. (grossii) + Chroomonas sp. (grossii) + Chroomonas sp. (grossii) + Choomonas sp. (grossii) + Choomonas sp. (grossii) + Choomonas sp. (grossii) + Choomonas sp. (grossii) + Choomonas sp. (grossii) + Choomonas sp. (amphioxies, minuta) + Choomonas atomus + - - - - - - - - - - - - -	Nitzschia sp.											+
Katodinium rotundatum + Heterocapsa triquetra + Olisthodiscua luteus + Bipedinomonas sp. (grossii) + Pyraminonas sp. (grossii) + Choomonas sp. (grossii) + Annochloris atomus + Choomonas sp. (grossii) + Chootocylindrus sp. + L. danicus + Skeletonema costatum - Cyclotella sp. + Thalassiosira sp. + T. nordenskioldii + Chaeotoceroa sp. + Phaeodactylum tricornutum + Nitzschia sp. + Oproodentrum micans +	Prorocentrum minimum	•										
Heterocapsa triquetra * Olisthodiscua luteus * Bipedinomonas sp. * Pyramimonas sp. (grossii) * Chroemonas sp. (amphioxiea, minuta) * Chroemona costatum * L danicus * L danicus * L danicus * Skeletonema costatum * Cyclotella sp. * Thalassiosira sp. * T. nordenskioldii * Carataulina pelagica * Thalassionema nitzschioides * Gyrosigma sp. * Phaeodactylum tricornutum * Nitzschie sp. * Prorocentrum micans * Gymodiniun sp. * Gyrodiniun estuariale * Olisthodiscus luteus * Eutreptia lanowii * Euglena sp. * Cryptomonas sp. *	Gyrodinium pellucidum			•								+
Olisthodiscus luteus * * Bipedinomonas sp. * * Pyramimonas sp. (grossii) * * Chroomonas sp. (grossii) * * Kannochloris atomus * * * * * Kannochloris atomus * * Icejtocylindrus sp. * * L. danicus * * Skeletonema costatum * * Cyclotella sp. * * Thalassiosira sp. * * T. nordenskioldii * * Cerataulina pelagica * * Chaeotoceros sp. * * Phaeodactylum tricornutum * * Witzschia sp. * * Oproodiniun estuariale * * Olisthodiscus luteus * *	Katodinium rotundatum	+	+									+
Bipedinomonas sp. * Pyramimonas sp. (grossii) * Chroomonas sp. (grossii) * Choomonas sp. (grossii) * Chlorella sp. * Nannochloris atomus * * * vig summer (June 15 - 22) Leptocylindrus sp. * L. danicus * Skeletonema costatum * Cyclotella sp. * Thalassiosira sp. * T. gravida * T. nordenskioldii * Carataulina pelagica * Gyrosigma sp. * Phaeodactylum tricornutum * Nitzschia sp. * Oprocentrum micans * Gyrodiniun sp. * Gyrodiniun sp. * Cyrodiniun sp. * Cureptia lanowii * Eutreptia lanowii * Eutreptia lanowii *	Heterocapsa triquetra			·		•			+			
Pyramimonas sp. (grossii) + Chroomonas sp. (amphioxies, minuta) + Chlorella sp. + Wannochloris atomus + * + Wannochloris atomus * * + Wannochloris atomus * * + wannochloris atomus * * + * *	Olisthodiscus luteus	*.		+								
Chroomonas sp. (amphioxiea, minuta) + + + + + + + + + + + + + + + + + + +	Bipedinomonas sp.											+
Chroomonas sp. (amphioxiea, minuta) + + + + + + + + + + + + + + + + + + +	Pyramimonas sp. (grossii)	+	+									
Namnochloris atomus * + + trly summer (June 15 - 22) (Leptocylindrus sp. L. danicus * L. danicus * Skeletonema costatum * * * * * * * * * * * * *) +	+	+		*						+
Namnochloris atomus * + + trly summer (June 15 - 22) (Leptocylindrus sp. L. danicus * L. danicus * Skeletonema costatum * * * * * * * * * * * * *	Chlorella sp.				+					+		
Leptocylindrus sp. + L. danicus + Skeletonema costatum * Skeletonema costatum * Cyclotella sp. * Thalassiosira sp. * T. nordenskioldii * Cerataulina pelagica * Chaeotoceros sp. * Thalassionema nitzschioides * Gyrosigma sp. * Phaeodactylum tricornutum * Nitzschia sp. * O Prorocentrum micans * Gymodinium sp. * Gyrodinium estuariale * O listhodiscus luteus * Eutreptia lanowii * Euglena sp. *			+	+						+	+	
Nitzschia sp. * +	L. danicus Skeletonema costatum Cyclotella sp. Thalassiosira sp. T. gravida T. nordenskioldii Cerataulina pelagica Chaeotoceros sp. Thalassionema nitzschioides Gyrosigma sp.	• •	* * *	• • •	•					• •	•	* * *
) Prorocentrum micans Gymnodinium sp. + Gyrodinium estuariale) Olisthodiscus luteus . Eutreptia lanowii + * Euglena sp Cryptomonas sp. +					+							
Gymnodinium sp. + Gyrodinium estuariale * O listhodiscus luteus . Eutreptia lanowii + * Euglena sp. *	•			-								+
Gyrodinium estuariale " Olisthodiscus luteus - Eutreptia lanowii + * Euglena sp. Cryptomonas sp. +	-		+									
) Olisthodiscus luteus . Eutreptia lanowii + * Euglena sp. * Cryptomonas sp. +			-									*
Eutreptia lanowii + * Euglena sp. * Cryptomonas sp. +	-								•			
Euglena sp. +		•	*									
Cryptomonas sp. +	•		•									+
		•										·
) Chionella en) Chlorella sp.			•			_	_	_	_		· ·
Nannochloris atomus + + · · · · · · · · · · ·	-		*	•		•	•	•	•	•	•	

Table 2 (continued)

Sampling Location R832 R815 JC14 JC30 JC41 JC57 JC65 JC75 JC83 JC91 B81 D81 Species/Dates Nid-summer (July 6 - August 10) 1) Leptocylindrus danicus Skeletonema costatum Thalassicsira sp. T. rotula Cerataulina pelagica Chaetoceros sp. (sociale) Rhizosolenia sp. R. delicatula Thalassionema nitzschioides Nitzschia sp. N. delicatissima N. seriata Cylindrotheca closterium 2) Prorocentrum minimum P. redfieldi Gymnodinium sp. Gyrodinium estuariale Katodinium rotundatum 3) Olisthodiscus luteus Chrysochromulina sp. Eutreptia Lanowii Euglena sp. 4) Chlorella sp. Nannochloris atomus Late summer (August 24 - September 14) 1) Leptocylindrus danicus L. minimus Skeletonema costatum Thalassiosira gravida T. nordenskioldii T. rotula Cerataulina pelagica Chaetoceros sp. C. decipiens Rhizosolenia delicatula Ditylum brightwelli Thalassionema nitzschioides Nitzschia sp. Nitzschia pungens Cylindrotheca closterium 2) Prorocentrum minimum Gymnodinium sp. Katodinium rotundatum 3) Olisthodiscus luteus Chrysochromulina sp. Pyramimonas sp. Eutreptia lanowii Chroomonas sp. (amphioxiea, minuta) 4) Chlorella sp. C. marina Nannochloris atomus

Table 3. Frequency of occurrence in samples of common phytoflagellate species at selected locations along the New Jersey coast and major estuaries for the period May 24 to September 14, 1988. Letters indicate times of dominance as follows: a = late spring (May 24 - June 8), b = early summer (June 15 - June 22), c = midsummer (July 6 - August 10), and d = late summer (August 24 - September 14)

.

- ..

		Sam	pling	Locat	ion	
	RB15	JC14	1030	JC57	JC75	081
CHRYSOPHYCEAE Ochromonas sp.	1					
0. variabilis	1			1c		
Calycomonas ovalis	1					
Apedinella radians	•					1
Ebria tripartita	3	2 '	2	1	1	
HAPTOPHYCEAE						
Chrysochromulina sp.	4d	1	1		1	
C. minor		1	1	1	1	
CHLOROPHYCEAE						
Chlamydomonas sp.	td	1		1		
			•		•	
PRASINOPHYCEAE						1
Bipedinonomas sp. Pyramimonas sp.	1d ·		2	1		1
Pyramimonas sp. P. amylifera	1		-	•		•
P. grossii	1					
P. micron	1					
Tetraselmis sp.	1					
ELGLENOPHYCEAE						
Eutreptia sp.	1		1			
E. lanowii	5c	2c	1.	2	2c	
Euglena sp.				2	2	1
E. proxime	1					
Trachelomonas sp.	2				1	
DINOPHYCEAE						
Pròrocentrum micans ²		2		1	2	1
P. minimum _	5c	1	2	1	5	2
P. redfieldi ³ (triestinum)	1				1c	
P. scutellum			1			
Exuviella sp.		1				
E. marina			1			
Dinophysis acuta ⁴		1	1	1		
Amphidinium sp.						1
Gymnodinium sp.	3				3	1
G. danicans	3		1	3	2	
Gyrodinium sp.	1	•				
G. estuariale ⁵						1Ь
G. pellucidum						1a
Polykrikos sp.			1			
Katodinium sp.	1				_	1
K. rotundatum ^{1,2}	2a	3		1	2	2a
Heterocapsa triquetra		1			1	

Table 3 (continued)

		Sam	pling	Locat	ion	
	<u>8815</u>	JC14	JC30	JC57	JC75	081
Oblea		1			1	
Protoperidinium sp.	1	1	1	1	2	
P. achromaticum		2				
P. aciculiferum	1					
P. pallidum		1				
P. pellucidum		1	1			
Scripsiella trochoida (Peridinium trochoideum)	6		1		2	1
Ceratium sp.		1		1		
C. Longipes			1	1		
C. minutum					1	
CRYPTOPHYCEAE						
Hemiselmis sp.					1	
Chroomonas sp.	1	1	1	1		•
C. amphioxica	1a			•		1
C. minuta	1	ta	1			1a
Cryptomonas sp.	2					
CHLORONONADOPHYCEAE						
Olisthodiscus luteus ^{1,2}	5a	2a ′	1	1	1	2
Merotrichia capitata	1					
Total	60	27	22	21	32	19
Frequency Index ⁶	4.62	2.08	1.69	1.91	3.56	3.17

Footnotes: 1. Dominant in red tides in Raritan - Sandy Hook Bay in 1988.

2. Caused previous red tides in Hudson - Raritan estuary and adjacent New Jersey coastal waters.

3. Caused red tides in Long Island Sound in 1987; dominant in red tides in Raritan - Sandy Hook Bay in 1988.

4. Caused milky-brown water in Atlantic City coastal area in 1978.

5. Caused red water in Delaware Bay capeshore in 1988.

6. Frequency Index = (total occurrences) divided by (number of times sampled).

۰.

Table 4. New Jersey coastal water conditions, summer of 1988 highlights and reported incidents

Date	Locale	<u>Observation/Condition</u>
May 17 - 19	Brigantine (just north of Atlantic City) - 5 miles off	line of floating debris.
22 - 23	Sandy Hook	some trash (paper, plastics, etc.) and debris washing in.
	Kanasquan	some floating debris one mile off.
	Island Beach to Atlantic City	scattered lines of floating trash and debris, brown water from diatom bloom (<u>Cerataulina</u> sp.) in patches along beach.
24 - 28	weather event	winds continuous from SSW; mean top speed 17 mph.
23 - 31	Lower New York Bay (Staten Island to Rockaway)	scattered lines of floating debris.
24	Lower Bay (at Narrows)	red water (phytoflagellate bloom).
•	Raritan Bay (at Highlands)	reddish brown water along south shore (bloom of <u>Cerataulina</u> sp. plus dinoflagellates, <u>Katodinium</u> <u>rotundatum</u> and <u>Prorocentrum minimum</u>).
	first helicopter sampling	
	Island Beach to Long Beach Island	green water in surf and tide pools along beach.
24 - 31	entire coast of New Jersey	brown water and foam from widespread <u>Cerataulina</u> bloom in patches from beach to a few miles off.
	Ocean County (Manasquan to Long Beach Island)	the dinoflagellate, <u>Ceratium</u> sp., also abundant in coastal samples.
Juine 2 - 3	Raritan Bay at Perth Amboy (mouth of river)	some dead fish (menhaden), profuse garbage and vegetation (marsh grass) floating.
	Lower Bay, Arthurkill to Gravesend (Narrows - Rockaway) area	several floating slicks of marsh grass and trash.
7 - 8	Raritan Bay	red water phytoflagellate bloom of <u>Olisthodiscus</u> <u>luteus</u> .
	New Jersey Coast	brown water conditions lingering but beginning to clear.

* Observations of water discolorations and floating materials made primarily from NJDEP and USEPA helicopter surveillance flights

Table 4 (continued)

Date	₽				Locale	Observation/Condition
June	7	-	8	I	Delaware Bay	water turbid (brown); phytoplankton very diverse, several (diatom and flagellate) species abundant in sample.
	:) ∦				first southern New Jersey helicopter sampling	
	4	1	•		Barnegat Bay, BB2 to Barnegat Inlet	extensive seaweed (eeigrass) present.
	1	3	-	17	Raritan - Sandy Hook Bay	red tide of <u>Olisthodiscus</u> <u>luteus</u> .
					Sandy Hook to JC65	brown algal foam in surf.
					Lower Bay (Staten Island, Gravesend area)	scattered floating debris (marsh grass and trash).
		4	•	18	Atlantic City - 20 miles off	garbage and trash slicks, some bags full of garbage floating.
		2 2 	-	28	Raritan Bay south shore (Keansburg vicinity)	red to brown water; dense bloom dominated by <u>O.</u> <u>luteus, K. rotundatum</u> and <u>Eutreptia lanowii</u> (euglenoid).
		ił.			Sandy Hook Bay south shore (below RB15)	many dead fish of several species observed alongshore; hypoxia suspected as the cause.
		• •	-	28	Lower Bay and Narrows area	scattered garbage and brown foam.
		9 }			Sandy Hook to Long Beach Island	scattered streaks of greenish water observed off coast; seaweed in Ocean County surf.
		ł			Brigantine	reddish-brown patch off coast.
July	• ;	2			Lower Bay (off Rockaway and Sandy Hook)	large slicks of floating marsh grass, timbers and plastics.
		3	• •	6	Raritan - Sandy Hook Bay	continued red to brown water bloom(s); sample dominated by <u>P. minimum, E. lanowii</u> and several diatom species.
		5	•	8	Lower Bay (Staten Island to Gravesend)	scattered debris and foam on surface.
					Delaware Bay capeshore	red water dinoflagellate bloom of <u>Gyrodinium</u> <u>estuariale</u> .
					weather event	wind predominantly from SSW, mean top speed 21 mph; surf temperature drop from 65 ⁰ to 54 ⁰ F.

Table 4 (continued)

Date	Locale	Observation/Condition
July 11 - 14	Lower Bay (Staten Island, Narrows, and Ambrose Channel)	slicks of floating trash.
13	Raritan estuary, N.J. coast south to Atlantic City	widespread blooms of several diatom species.
	Barnegat Bay	brown water bloom dominated by the chlorophyte, <u>Nannochloris atomus</u> begins.
15 - 18	Raritan Bay	red tide continues.
	N.J. coast south to Long Beach Island	seaweed and brown foam along beaches.
13 - 29	Asbury Park vicinity	beaches closed intermittently due to high fecal coliform bacteria counts.
22	Sandy Hook bayshore	several thousand dead menhaden wash in; cause undetermined.
24 - 26	Deal to Asbury Park	patches of red to brown water to 1/4 mile off (partially due to sewage plant discharge plume); red tide unconfirmed.
August 1 - 2	Lower Bay at Staten Island, Ambrose Channel (bay entrance)	lots of debris; high tides washing it off shores into channels.
	New Jersey coast	varied floating slicks, algal foam and seaweed all along; surf temperature reaches season peak (80 ⁰ F)
2	Sandy Hook Bay (south shore)	second fish kill with hypoxia event this summer; recurrent red tide dominated by <u>K. rotundatum, E.</u> <u>lanowii</u> and <u>Procentrum triestinum (redfieldi)</u> .
3 - 15	weather event	winds continuous from SSW, mean top speed 18 mph; surf temperature drop from upper 70's (80 ⁰) to 57 ⁰ F.
7	New Jersey coast	seaweed all along.
7 - 10	southern N.J. coast	brown foam present (from diatom blooms).
9 - 11	Cape May	school of 30 dolphins sighted.
12	Asbury Park	seaweed and algae present; odor from sewage plant.
13	Lower Bay at Narrows	much debris present.
14	Sandy Hook to Long Branch	algae(?) present.

Table 4 (continued)

Date	Locale	Observation/Condition
August 21	Sandy Hook to Manasquan	algal foam present.
19 - 23	weather event	winds predominantly from NE, mean top speed 14-15 mph; > 2 inches rain; surf temperature increase to 69 ⁰ F.
24	Atlantic City	reddish brown water (from algal bloom).
	last south Jersey helicopter sampling	
25	Sandy Hook	beach closed due to an apparent algal bloom.
25 - 26	Lower Bay (Narrows to Gravesend)	much trash and wood floating.
September 1 - 2	Manasquan to Ortley Seach	floating trash observed.
1 - 4	weather event	winds predominantly from SE, mean top speed 13 mph; > 1 inch rain; surf temperature relatively constant.
7 - 14	Raritan - Sandy Hook Bay	red - brown water caused by abundance of several diatom species.
8	Raritan Bay to adjacent N.J. coast	brown algal foam present.
12	Lower Bay at Ambrose Channel	scattered timbers present.
. 14	Barnegat Bay	brown water bloom continues; presence of <u>Aureococcus</u> sp. confirmed but <u>Nannochloris</u> sp. apparently still dominant.

19

last helicopter sampling

temperatures from Island Seach State Park, N.J.

-

Table 5. Summary of 1988 ocean temperature data (^OC) for EPA helicopter New Jersey coast perpendicular stations; NCAA* weather data (wind = fastest measured mile; ppt = cm of rainfall) and satellite offshore surface isotherms; surf

.

Date	VEAT	HER		TENPERA JC14 JC53	T U R E JC69 JC85 NOAA Satellite
Date	Vind	ppt _	air ^o C sur	1 mi./9 mi. 1 mi./9 mi. 1	
May				,	
24	SSW23	0.74	22.2	•	•
25	SW18	0.69	13.9		
26	ssw16		13.9		:
27	SSW16		17.3	Surface 17.0	
28	\$12		18.3	Bottom 13.4 /10.5 11.7 /10.9	
29	₩9		21.7		
30	SSW15		21.1		
31	NW17		26.8		
June 1	¥23	0.51	23.3		•
2	NE20	0.03	13.2		
3	NEZZ		12.8		
4	N14		12.2		
5	W23		18.9		
6	NW16		22.8	Surface 17.0 /16.7 16.7 /16.6	
7	NNW14		23.9	Bottom 13.2 /10.3 12.0 /11.9 15	5.2 /13.0 15.0 /14.0
8	N12		17.8		
9	NNE17	2.72	14.5		•
10	NNE14		13.2	Surface 16	6.6 /15.3 16.8 /15.8
11	SSW12		16.1	Bottom - 16	6.5 /14.5 15.8
12	WNW16		23.3	•	
13	SSW14		25.0	Surface 18.8 /18.6 18.9 /18.4	
14	SW14	•	26.1	Bottom 14.5 /10.6 12.2 /13.0	
15	SSW15		25.0	Surface	17-18.0
16	SSW18		21.7	Surface 20.4 /19.7 15.7 /18.0 15	
17	SW21	0.46	20.5	Bottom 13.8 /10.2 11.7 /11.7 13	3.1 /17.4 16.7 /13.4
18	ENE12		21.1		
19	S16		18.9		
20	SW24		21.1		
21	SW14		_	Surface	20-21.0
22	SW23		26.1 13		
23	SSW28	0.23	25.5 13	•	
24	NE21			Surface 19.3 /16.7 15.1 /16.9 10	
25	SSW23		18.9 17	Bottom 13.8 /9.5 10.7 /11.3 1	3.9 /12.0 16.7 /12.9 18-19.0
26	SW25		22.2 14		
27	NNW17			Surface 16.6 /16.3	
28	SSW21		20.5 16	Bottom 14.2 /9.4	
29	SSW16		22.2 16		
30	N20		19.5 17		•
July 1			17.8 17		
2	NW18		20.5 16		
3	\$21		21.7 17		
4	SSW21		21.7 18		
5	S16		21.7 17	Surface	20-21.0
6	SSW18		22.8 16		•

Table 5 (continued)

Date	VEAT	4 E P				T E N JC14	PER/	ATUR JC69	e JC85	NCAA Satellite	
vare	Vind	ppt	air ^o C	surf				1 mi./9 mi. 1			
l.							• • • • • • • • • • • • • • • • • • • •				
7	SSW18	0.03	21.7	13.2							
8	SW18	0.05	21.7	15.0							
9 ij	SSW25	0,97	25.0	12.2							
10	WSW14		26.1	13.2							
11 "	SSW13		22.2	13.2							
12 🗏	S18	0.69	22.2								
13	SW13		23.9	13.2	Surface	•				21.0	
14	SSW18	•	23.3	16.1							
15	E12		27.8	12.2							
16	\$S₩18		23.9	17.8	Bottom	14.8 /12.8	12.3 /12.5				
17 👔	N17		23.9	17.8							
18	N15		25.0	13.2							
19	S16		25.0	12.8							
20	S⊌17		25.5	12.8							
21 j	SSW23		22.2	15.6							
22	SW16	1.83	20.5	12.2			-				
23	\$12	0.64	19.5	12.8							
24	S₩14	0.10	22.2	13.9							
25	SW17		25.0	18.9			-		•		
26	₩12	1.40	21.7	18.9	Surface	•				22-24.0	
27	i usu14	0.15	22.2	16.8							
28	\$16		22.8	14.5							
29.,	ssw15		25.0	20.5						•	
30	SSW10		28.7	20.5							
31	sw12	1.42	26.8	21.7						-	
Aug.	1 SE10		25.5	27.0							
2	ssw14		25.0	26.8							
3	S12		26.8	21.1							
-	\$15		26.8	21.1	Surface	8				25-26.0	
	SSW16		26.1	18.9							
6	SSE 10		26.8	18.9						-	
7	SSW20		25.5	21.1							
8	SSW14		25.5	16.1							
. 9	ssw15		25.5	22.2							
10	SSW14	0.05	26.1	18.3	Surface	Ð				25-26.0	
11	SSW20		24.5	15.0							
12	SSW21		23.9	15.0							
13	SW20		23.3	14.5	Bottom	17.0 /12.5	13.0 /11.0				
14	ssw23		22.8	16.8							
15	SSW22		23.3	13.9			· -				
16	NW15		27.2	14.5							
17	: SW20	2.79	23.9		Surface	e				18-23.0	
18	N14		25.5	18.9							
19	NE14	0.31	19.5	17.8							
20	NE13	2.13	17.8	21.1							
21	1 N10	0.28	20.5	21.1		14.0 /11.0	14.0				
22	NE20	2.39	18.3	20.0	Surface	e				20-23.0	
23	SE15	0.05	20.5	20.5							
24	" SS₩17		22.8	13.9							

Table 5 (continued)															
						T E	EN	ΡE	R	A 1	U 1	R	E		
Date	WEAT	HER					IC14	JC	53		1069		JC85	NCAA Satellite	
	Wind	ppt	air ^o C	surf		1 si	i ./9 mi .	. 1 si. ,	/9 mi .	. 1 🖬	i./9 mi	. 1	mi./9 mi.	mid-shelf	
25	SSW15		22.8	20.0											
26	SSW14		22.8	18.3											
27	\$14		22.8	20.0											
28	S15		23.3	18.9											
29	S21	1.45	21.7	17.8											
30	NE13	0.03	17.8	17.6											
31	N10		18.3	19.5											
Sept.			20.0	18.9	Surface	•								20-22.0	
2	ESE10		20.6	20.0											
3	SSE12		20.6	20.7											
4	SSW18	2.96	20.5	17.5											
5	W15		20.0	16.8											
6	NNW14		17.3												
7	SSE10		16.1												
8	ENE13		17.8		Surface	19.8	3 /19.6	18.7	/18.9	19.0	6 /19.8	3 2	0.0 /19.4	20-21.0	
9	SSW9	0.20	21.7										9.2 /15.4		
10	NW10	0.13	22.8				-				•				

* National Oceanic and Atmospheric Administration (NOAA) data from National Weather Service, Atlantic City; National -Marine Fisheries Service, Sandy Hook, N.J.; Marine Climatological Investigation, Narragansett, R.I.

-1

(New Jersey Geological Survey Technical Memorandum 89-1) ANNUAL SUMMARY OF PHYTOPLANKTON BLOOMS AND RELATED CONDITIONS IN NEW JERSEY COASTAL WATERS, SUMMER OF 1988 • . .