Acknowledgements:
Major support has been provided by the Thomas L. Kempner Jr. Foundation

Additional generous support from
Helen & William Mazer Foundation
Partners for Health Foundation
TABLE OF CONTENTS

4 **INTRODUCTION**

8 **FRAMEWORK**
 - EXPERIENCE
 - CONNECTIONS
 - ENVIRONMENT
 - EXPERIENTIAL TYPOLOGIES
 - VISION

57 **ANALYSIS**
 - EXPERIENCE
 - CONNECTIONS
 - ENVIRONMENT

147 **APPENDIX**
 - ADDITIONAL MATERIALS
 - GREEN INFRASTRUCTURE ASSESSMENT
 - BRIDGE STRUCTURAL ANALYSIS
For many years, since railroad services ceased in 2002, community members advocated for the transformation of the Old Boonton Line from railroad to recreation trail.

The interest of each town and city along its path has grown in recent years and support for a rail-trail has grown, and with unifying advocacy from NJ Bike & Walk Coalition. The rail corridor has been the focus of routing studies to connect local and regional trails including the East Coast Greenway and the 9/11 Memorial Trail and to provide an elusive east-west link across the Passaic and Hackensack Rivers. This particular rail corridor is of special interest because it travels through an urban area where highway road networks and natural features, including two navigable rivers, are obstacles to bicyclists and pedestrians and few other safe options are available. Recently, to the delight of advocates and community members, Norfolk Southern announced the sale of the land. Planning to convert the rail line to a greenway is moving forward.

The Open Space Institute (OSI), a non-profit land trust, is facilitating the transfer of the land from Norfolk Southern to local governments and is leading separate studies to review the legal and financial aspects of purchase, environmental conditions along the property, and the design potential for the site. This Framework Plan, led by MNLA and prepared for OSI, is focused on establishing a design framework for The Hudson Essex Greenway, evaluating existing bridges, understanding stormwater management needs, and evaluating opportunities for the greenway design. This plan articulates opportunities for the greenway, highlights its special moments and unique qualities, and will serve as a starting point for engaging community members in the design and planning of the greenway.

At a conceptual level the conversion of the railroad to a recreation trail is relatively straight forward. In practice this change requires in-depth evaluation to more fully understand how existing conditions will inform the opportunities
for enjoyable, vibrant, and safe use by community members. At a high level initial studies indicate that an environmental cap will be required over historic fills, the existing bridges can be retrofitted to accommodate greenway users, and stormwater management practices will be needed in the future design. Bridge studies also indicate that the Hackensack River Bridge is the most challenging and that additional evaluation is needed to provide direction on a preferred approach. The environmental assessment is a separate report and provides greater detail of the site’s environmental conditions. Additional information on the bridge assessment and stormwater management is provided in the appendices of this report.

This framework plan synthesizes the studies noted above and provides additional analysis of ecological, experiential, and planning aspects of the project. The analysis and visioning that follow illustrate the incredible potential for the greenway to become a source of community pride and enjoyment. Along its nearly nine-mile length the greenway passes over bridges and through suburban woodlands, urban landscapes, small towns, and the breathtaking Meadowlands environment. These typologies give the greenway a unique personality and will create broad appeal among recreational users, commuters, and nature enthusiasts. Through the lens of experience, environment, and connectivity this framework plan illustrates the magnitude of the opportunity presented by this project and aims to be a catalyst for the community engagement and dialogue that will shape the design and implementation moving forward.
GOALS

1. **Create an inspiring vision** that can bring communities together around common goals.

2. **Provide a foundation to inform the next steps** in the design process by illustrating the potential for cohesive and accessible linear park and greenway.

3. **Provide a tool for future community engagement.**

4. **Celebrate the unique ecological settings** and identify how ecology and nature can be revitalized, restored and enhanced.

5. **Illustrate the potential for a multi-functional and multivalent shared greenway,** and how variation in existing conditions (such as topography and ecology) can inform the range of future character and program.
Foster a welcoming and inclusive environment through offering a flexible and varied program, as well as ensuring universal access.

Provide potential experience identification for all types of users.

Acknowledge the potential for interpretation and expression of multiple histories and today’s neighborhood identities.

Illustrate how the greenway is a regional asset and fits into the statewide and nationwide trail system and the effort of completing the East Coast Greenway.
The framework is guided by principles that celebrate the human experience, the unique scale that provides a multitude of connections, and the natural and built environment.

Looking at The Hudson Essex Greenway through these three lenses enriches our understanding of the character of the greenway, its similarities and differences along the way and helps define experiential typologies.

The greenway’s greatest magic lies in its uncommon scale and ability to create an immersive experience for all those who travel along its length. This long narrow thread of land transcends political lines and connects communities to work, play, and each other. It is a dynamic experience that unfolds as one moves through shady woodlands, disturbed lands, industrial areas, neighborhoods, salt marsh, and wetlands. Like an epic poem it tells the story of the people of this community – their adventures, feats of athletic endurance, and daily ritual. It is a story layered with richness, subplots, and unfolding narrative that spans from end to end and through time. The story is written day-by-day, by walkers out for a stroll in the cool morning air, runners testing their racing legs, cyclists battling fierce headwinds, children playing made-up games, and countless others. The greenway is the setting and the groundhog, autumn leaves, gnarled trees, and green heron are among many of the supporting characters in this story. The greenway is a celebration of life – of the people and the natural spaces that contribute to its identity.
The Experience framework embraces the diversity of the greenway’s physical environment, cultural history, as well as its users and their activities. By teaming an understanding of topography, bridges and other site conditions with that of future uses, this framework identifies programmatic opportunities that are deeply rooted in the site. On weekday mornings a user...
may be a commuter. In the evening that same user may take their children to the greenway to run and play, while weekends may include trips to the Meadowland to birdwatch or cast a line. Designing for this diversity creates a greenway layered with opportunities for movement, recreation, and connection that has broad appeal for the many communities along its length.
CONNECTIONS

The Connections framework celebrates the role the greenway plays as a collector, both regionally and locally.

The greenway’s power comes from its scale and its ability to connect people across political borders, re-connect fragmented landscapes and provide a destination for regional users. By reinforcing existing access points, creating new gateways and portals, and connecting to existing trails and parks, the greenway can truly integrate into the regional network of open spaces and further amplify its unprecedented scale.
ENVIRONMENT

In celebrating nature and infrastructure the Environment framework recognizes the power of environmental systems to the greenway’s experience and function.

Greenway users will discover a landscape that changes dramatically from Montclair in the west to Jersey City in the east. The topographic change is gradual and almost imperceptible, but over nine miles the greenway descends from an upland environment, where suburban homes cut through once rich hardwood forests, to a maritime environment, where salt marsh grasses grow and brackish waters gnaw at its edges. These ecological systems and variations in the built environment fabric reveal the natural tendencies of the land and serve as a guide to the transformation of the greenway’s program, infrastructure, plantings, soils, water flow, and habitat.
BIRDS OF THE ATLANTIC FLYWAY

OSPREY
NORTHERN HARRIER
BLACK CROWNED NIGHT HERON
SALT MARSH SPARROW

UNIQUE SPECIES

NORTHERN DIAMONDBACK TERRAPIN
WINTER FLOUNDER
MONARCH BUTTERFLY
MUSKRAT
EXPERIENTIAL TYPOLOGIES
EXPERIENTIAL TYPOLOGIES
OVERVIEW

The frameworks of Environment, Experience and Connections help identify distinct areas of The Hudson Essex Greenway. While the experience varies greatly along the length of the greenway and is rooted in the site’s topography, ecology and context, the five major experiential typologies – suburban woodland, urban transformation, meadowland expanse and bridges, can help identify programmatic opportunities.
SUBURBAN WOODLAND
EXPERIENTIAL TYPOLOGIES

The western extent of the Old Boonton Line passes through leafy suburbs and lush landscapes. In the years since the railroad ceased operations the landscape has begun exhibiting its natural tendency to revert to a woodland ecology. Fast growing pioneer and exotic tree species are filling in the canopy and moving into spaces once occupied by track and train. Natural systems are clearly signaling that these spaces want to return to a woodland condition with dappled shade, songbirds, and rich woodland understory vegetation. The woodland typology embraces this ecological trajectory and recognizes that its restoration can create spaces that are ecologically and experientially rich.
GLEN RIDGE ‘WOODED TRAIL’
EXPERIENTIAL TYPOLOGIES

Connection to Bloomfield Commercial District to East
Street Level Access

Wooded Slopes Rise Up in Relation to Trail to the West
Existing Dense Canopy Provides Shade and Habitat

Historic Benson Street Station

Connection South to Glen Ridge Public Library, Ridgewood Ave. School, and Glen Ridge Train Station

WEST TO MONTCLAIR

WILDWOOD TERRACE

BENSON STREET
GARDEN STATE PARKWAY THRESHOLD
EXPERIENTIAL TYPOLOGIES

Connection to Oakside Bloomfield Cultural Center, Bloomfield Skatepark, Foley Field Beyond

Connection to Downtown Bloomfield, Bloomfield High School to the West

WEST TO GLEN RIDGE AND MONTCLAIR

OAKSIDE BLOOMFIELD CULTURAL CENTER

JOHN F. KENNEDY DR. S.

SPRUCE ST.

BEACH ST.

24 Essex Hudson Greenway | Framework Plan
Street Level Access

EAST TO BELLEVILLE AND BELLEVILLE PARK

Connection to Fairview Elementary School, Bloomfield Tech to the South
The route of the Old Boonton Line through Newark created a broad open swath of land devoted to transportation infrastructure. Today, much of the rail has been removed or buried. Trees are lacking and crushed stone stretches from property line to property line. In some instances, where the topography is flat, the railroad right-of-way has been leased out to various commercial uses and fenced off from access.

The Essex Hudson Greenway provides an opportunity to transform this gravelly landscape into a treasured community open space that infiltrates stormwater, provides shady canopy trees, adds amenities for play and community events, and that connects to neighboring communities. Compared to other portions of the greenway the topography is relatively flat and offers the greatest potential for a mix of active and passive recreation programming.
NEWARK URBAN CONNECTOR
EXPERIENTIAL TYPOLOGIES

Trail Connection to Park Elementary School

Flat Space For Additional Programming

BELLEVILLE PARK CONNECTION

HIGHLAND AVE

MT PROSPECT AVE.

GREENWOOD LAKE ST.

VERONA AVE.
Former Tiffany Factory

Street Level Access from Greenwood Lake Street

Existing Bike Lanes

100 FT

SECOND RIVER

TIFFANY BLVD.

EAST BOUND TO PASSAIC RIVER AND KEARNY
NEWARK URBAN ACTIVATION
EXPERIENTIAL TYPOLOGIES

WESTBOUND TO BELLEVILLE PARK

Opportunity to Provide Accessible Open Space to Nearby Residential Communities

Connections to Commercial and Cultural Resources, Luis Muñoz Marin Elementary School
Street Frontage Along Verona Ave.

Wide, Flat Space for Additional Programming

Potential Connection to Second River Corridor

EAST BOUND TO PASSAIC RIVER AND KEARNY
As the greenway passes through Kearny it takes on the qualities of a thread passing through the fabric of the town. In the west the rail line crosses the Passaic River and cuts deep into earth and forms a shallow valley. In the center, near Arlington Depot Park, it emerges from this deep cut, levels out and feels very much like a part of the day-to-day landscape of life in Kearny. Just to the east the greenway maintains its steady grade as the land rises, then falls leaving the path dramatically elevated with prospecting views.

This combination of landscapes has the qualities of small town America, with wild spaces where kids romp and play not so far from home and also with communal spaces where the town gathers for farmers markets, summer movie nights, and the Halloween costume competition. In this town typology the greenway merges with the community fabric providing spaces to play while also blurring the edges of greenway and town to draw greenway users into the shops and restaurants they find along their journey.
Opportunities for Unique, Elevated, Panoramic Views of Passaic River

Connections South to Kearny Riverbank Park and Various Cultural Resources

WESTBOUND TO NEWARK

PASSAIC RIVER

20 FT

MCCARTER HWY.
PASSAIC AVE.

EAST BOUND TO KEARNY THROUGH KEARNY GULCH

Existing at Grade Connections at Dead-End Streets

Trail Quickly Transitions into Deep, Wooded Gulch, Offering Unique Program Opportunities and Experiences

Historic Rail Cut Exposes Geologic Features and Creates Wetland Conditions Home to Various Native Plants and Animals
WEST BOUND TO PASSAIC RIVER THROUGH KEARNY GULCH

Gulch Connection Weaves Together Town and Nature

Connections to Various Cultural and Commercial Resources
EAST BOUND TO KEARNY MARSH AND MEADOWLANDS

Existing At Grade Connections Through Kearny, Opportunity to Connect to Arlington Depot Park as Central ‘Town Green’

Wide, Flat Space for Programming Opportunities

Trail Quickly Transitions to Sunken Trail Through Successional Planting Adjacent to Industrial and Residential Properties
Passing through the Meadowlands is an incredibly unique experience. The sun is blazing in summer, the winds are fierce in winter, and the mosquitoes are ferocious. However, it is these extreme conditions that make one highly aware of their senses and appreciative of the environment that surrounds them. True to its name, this landscape has the feeling of a meadow. The sky feels immense as the confines of urban development give way to expansive horizons and glimmering waters. As the greenway travels this landscape it simultaneously provides views illustrating the industriousness of human achievements and the enduring power of nature.
KEARNY MARSH ‘MEADOWLANDS GATEWAY’
EXPERIENTIAL TYPOLOGIES

Existing Adjacent Open Space

Breaks Through Trees Provide Glimpses Out Into Expanse Of The Meadowlands

Brackish Water Wetland Plants Provides Key Habitat

Potential Nature Walk Boardwalk Connection To Gunnell Oval Park
Successional Forest Along Rocky Slopes of Railroad Embankment

EAST BOUND TO MEADOWLANDS AND JERSEY CITY BEYOND

WEST BOUND TO KEARNY
MEADOWLANDS CROSSING
EXPERIENTIAL TYPOLOGIES

WEST BOUND TO KEARNY

BELLEVILLE TURNPIKE

NJ TURNPIKE (I-95)
Connections to HMDC Nature Center and Meadowlands Views, Sports Complex Beyond

Greenway Passes Under Belleville Turnpike

Unique Meadowlands Ecosystem Provides Opportunities for Wildlife Viewing and Birdwatching

Greenway Passes Under NJ Turnpike

EAST BOUND TO MEADOWLANDS AND JERSEY CITY
The bridges along the greenway are diverse in their scale and design and are a defining aspect of the user experience. Both underpasses and overpass bridges contribute to something unique in the urban environment – the freedom to move through space without interruption. Bridges passing over roads, rivers, and highways offer users expansive views and the ability to glide over traffic and waterways with ease. To the greenway user the overhead bridges feel like a series of portals or landmarks that...
define segments of their journey. Together these bridges give users the sense that the landscape has been designed to facilitate their enjoyment and effortless movement through space. This feeling is uncommon for pedestrians and cyclists and is exhilarating. Roughly half of the bridges carry the greenway on a structure over a feature or obstacle (overpasses), while others are allowing the trail to pass under a road, railway, or pipeline that crosses the greenway corridor (underpasses).
VISION

For many years community members envisioned the transformation of the Old Boonton Line to a vibrant greenway linking communities from Montclair to Jersey City, and beyond. Few people however have traveled the route of the tracks along its nearly nine mile length. In this length the greenway passes through woodlands, past industrial landscape, along residential communities, and into the heart of the Meadowlands. The dramatic variation in landscapes is an incredible journey that will excite and bring enjoyment to the lives of many people. The images that follow share a glimpse of how this landscape might be transformed and how it can appeal to a broad swath of community interests from cyclists and runners to birders and fishing enthusiasts. The intent of these images is not to suggest a final design, but to build support for the greenway and foster a community dialogue about how the greenway may be designed. The collection of images illustrates the incredible diversity of landscapes along the greenway and the magnitude of the opportunities this project presents. Ultimately, the design of the greenway will be informed by the natural environment and the voices of the communities along its length.
EXISTING CANOPY IS ENHANCED WITH A RICH WOODLAND PLANTING FOR SEASONAL INTEREST AND RESILIENCY.

SCULPTED TOPOGRAPHY MANAGES STORMWATER AND CREATES LUSH PLANTINGS FOR HABITAT AND VISUAL ENJOYMENT.

A GENEROUS 16’ WIDE COMMUNITIES. STO DIRECTED INTO A BRIDGES SERVE AS LAN INTO THE NEXT LEG.
SHARED USE PATH LINKS
RIMWATER RUNOFF IS
ADJACENT SWALES.

LANDMARKS AND PORTALS
OF THE GREENWAY.

ADJACENT SEATING AREAS PROVIDE
SPACE FOR PEOPLE TO STOP, REST,
AND ENJOY THE GREENWAY SETTING.

PLANTINGS STABILIZE
SLOPES AND CREATE AN
INVITING BACKDROP
TO ADJACENT SEATING
AREA.
URBAN TRANSFORMATION
VISION
A GENEROUS 16’ SHARED USE PATH PROVIDES CIRCULATION FOR CYCLISTS AND PEDESTRIANS

VEGETATED SWALES PROVIDE STORM-WATER CAPTURE

GATHERING SPACES ADJACENT TO SHARED PATH PROVIDE SPACE TO PAUSE AND ENJOY THE SCENIC ENVIRONMENT.
RESTORATION OF SALT MARSH COMBINED WITH ELEVATION CHANGE INCREASES SPECIES DIVERSITY, ECOLOGICAL FUNCTION, AND RESILIENCY
The analysis provides a foundation to the three frameworks that are outlined in the Vision chapter. *Environment, Experience* and *Connections* provide three lenses that are used to build a shared understanding of the site’s systems, its opportunities and constraints, as well as define experiential typologies and the vision.

The analysis chapter utilizes survey data (drafts dated 6/4/2020, as available), historic records, GIS data, census information, geologic records, and observations from in-person site visits. This information establishes a base of knowledge of the site and its relationship to the community, and helps to inform the design opportunities moving forward.
Proposed Essex Hudson Greenway Alignment and Context

SITE ANALYSIS
The greenway traverses changing landscape ecologies and communities. It offers a variety of experiences along the way defined by its physical elements and context.
EXPERIENCE

The land that the Essex Hudson Greenway passes through has a rich and storied history. Thousands of years ago glacial retreat created the Passaic and Hackensack Rivers. More than five hundred years ago the Lenape tribe inhabited these lands and gave these rivers the names that they still go by today. Less than two hundred years ago the route of the Old Boonton Line began service, and in 2002 this service ceased operation. Today this land reflects this continuum of ecological processes and human development. The experience of greenway users will be influenced by the rail bridges, topographic interventions, and patterns of land use, immigration, and development that have occurred over centuries.
SITE AND REGIONAL HISTORY

EXPERIENCE

PRE-1600s

200M years ago - Volcanic basalt of the Watchung Mountains (Wach Unks, or “high hills”) forms in the Jurassic Period.

20,000 years ago - Wisconsin Glacier retreats and forms Glacial Lakes Hackensack & Passaic. 10,000 years later, the lakes drain to create Hackensack & Passaic Rivers.

1,000 years ago - Sea level rises with the retreat of the last glacier, prompting flooding and growth of white cedar forests across the Meadowlands. Tidal, brackish and freshwater wetlands surround the lower Hackensack River, part of the lower Passaic River and the western edge of Newark Bay.

500 years ago - Lenni-Lenape people of the Algonquian nation occupy small settlements across NJ for centuries, cultivating the land and hunting.

1524 - Verrazano encounters the Lenape at New York Harbor.

1600s

1643 - Dutch colonists kill 80 Lenape men, women and children in the Pavonia Massacre (Jersey City).

1661 - Dutch settle the Village of Bergen (Jersey City) upon a former cornfield cleared by the Hackensack Lenape tribe.

1663 - New Amsterdam Governor Peter Stuyvesant purchases Secaucus Patent.

1666 - English colonists from Connecticut acquire land from the Yantecaw Lanape tribe for the first Newark settlement.

1668 - Major William Sanford acquires 30,000 acres from the Hackensack tribe (Kearny).

1679 - Dutch settlers squire Lenape land west of the Passaic River and north of Newark (Montclair).

1680 - Pinhorne Plantation encompasses Snake Hill and serves as center of village of Secaucus into the 19th century.

1700s

1753 - The nation’s first steam engine pumps out the Schuyler copper mines in Belleville.

1758 - Lenape relinquish their remaining New Jersey land in the Treaty of Easton.

1787 - New Jersey is the third state to ratify the U.S. Constitution.
1800s

1800s - Second River, Third River and Toney’s Brook provide power for Bloomfield’s sawmill and gristmill industries. Turnpike construction sends farm produce, lumber, copper, brick to New York and European markets. Jersey City and Newark become major manufacturing centers.

1806 - Opening of Newark and Pompton Turnpike (Bloomfield Ave).

1812 - Bloomfield ward of Newark becomes its own town.

1830 - Oakes Wollen Mill founded in Bloomfield.

1831 - Morris Canal connects the Delaware River to the Passaic River; extends to Hudson River in 1836.

1839 - Township of Belleville forms.

Mid-1800s - Newark and Jersey City pump Passaic River water for municipal water supplies.

1856 - Newark and Bloomfield Railroad Co. begins regular service to West Bloomfield.

1868 - Township of Montclair forms.

1873 - NY / Greenwood Lake Railroad service begins.

Late 1800s - Towns along the rail line transition into suburban communities.

1889 - Steam-operated drawbridge over the Hackensack River opens.

1895 - Township of Glen Ridge forms.

1896 - NJ state geologist surveys 43 square miles of Meadowlands.

1897 - Draw bridge no. 7.57 opens across Passaic River.

1898 - Essex County Park Commission engages Olmsted Brothers to design the first county park system.

1899 - Town of Kearny forms.

1900 - Borough of Secaucus forms. Name derives from Seke or Sukit “black” and Achgook “snake.”

1913 - Montclair opens new terminal, “Lackawanna” (“stream that forks”)

1952 - Complete mainline of the New Jersey Turnpike opens.

1969 - NJ Dept of Health documents daily disposal of 5,000 tons waste from 118 municipalities into the Meadowlands.

1960 - Delaware Lackawanna and Western Railroads merge to create Erie-Lackawanna Railroad.

1970 - Passaic River listed as nation’s 2nd most polluted river.

1982 - Essex County establishes the Lenape Trail from Newark to Milburn.

2002 - Old Boonton line ceases rail service.

Sources: Essex County Lenape Trail; NJCU Jersey City Past and Present; NJ Sports and Exposition Authority; Townships of Belleville, Bloomfield, Kearny, Montclair; Urban Habitats Dec. 2004 Issue
The land of the Lenape people extended throughout New Jersey, reaching up into southeastern New York State down to Northern Delaware. The Lenni-Lenape were members of the Algonquin nation. As European colonies took root in the 1600s, the Lenape had been living in the Delaware River area for centuries.

Today’s Lenape Trail wrapping around Montclair, Bloomfield, and Belleville pays homage to the land’s First People. Place names in the region - such as Passaic, Secaucus, Hackensack and Hoboken - derive from the language of the native inhabitants.

The region’s First People based their culture and lifestyle on adaptation to the natural environment. They were known as peaceful people and mediators, respected by neighboring tribes who referred to them as “grandfathers.” The earliest recorded creation myth of the Lenape was transcribed in 1679 by Dutchmen interviewing a Hackensack tribesman in the Passaic River valley. The 80-year-old conveyed a story of a tortoise, whose shell raised out of the water to be the earth, from which two trees grew, sprouting the first man and the first woman from their roots.

The Lenape tended gardens beside their permanent settlements. Horticulturalists cleared a site by girdling large trees and burning off shrub and groundcover. Burning served a two-fold purpose for hunters: it helped encircle and trap animals, and it also encouraged grass and shrub growth to attract deer and elk. A Lenape village near a stream would be defined with its gardens, but the surrounding hunting ground could be communal, utilized by multiple communities and tribes. In Newark today, a plaque commemorates the location of the stream and hill that marked the boundary between the Hackensack and Raritan tribes of the Lenape.

Lenape took to rivers, streams and the coast for abundant fishing. Tulip trees (Liriodendron tulipifera) provided bark for canoes. From the Meadowlands and surrounding marsh they caught geese, ducks, swans and cranes - by hand, with bows and arrows, and nets and snares.

European displacement of the Lenape began at the water’s edge, with the settlement of areas bordering the Hudson River, Raritan Bay and Sand Hook Bay, and moved inland. With the 1758 Treaty of Easton, the Lenape relinquished their remaining lands in New Jersey, and the majority were relocated to Oklahoma.

Lenape were keen users of the natural resources provided by the region’s rich forested and grass landscapes, utilizing a wide variety of plants for medicinal purposes.

Over its nine mile length the natural and built environments along the greenway route change dramatically. Built structures include single family residences, industrial workshops, and the massive network of transportation infrastructure and bridges. Similarly, the natural scenery spans from woodland to wetlands and maritime salt marshes. These features create an inspiring and dynamic experience. Within this context the existing railroad features – rails, ballast, signal towers, and other historic elements create a reassuring and steady rhythm. The salvage and reuse of these unique elements can provide historic context for the greenway and celebrate its past. These elements can be integrated into wayfinding and also help unify the future design as features that contribute to a beautiful design palette and strong visual identity.
BRIDGES

RAILS

UTILITY POLES

SIGNAL TOWERS
The topographic relationship of the greenway to adjacent properties is a defining element of the user experience as well as the performance and function of the greenway itself. While the land around the greenway may rise and fall in very short distance, the greenway itself maintains a steady sloping condition that rises and falls gradually over long distances.

This is the legacy of rail trails and the constraints of railroad which could not be built with steep slopes or abrupt changes in elevation. As a result the Essex Hudson Greenway at times is cut into the earth, elevated on fill above it, and sometime on a level plane. Depending on the historic geology and topography the conditions may be similar on both sides of the tracks or may be dramatically different. These topographic relationships inform planting and maintenance, erosion potential, drainage, compatibility with stormwater management initiatives, and potential for user access points.

The edge topography diagram (that follows) illustrates these relationships and roughly estimates the amount of grade change (a full topographic survey is not available).

The edge topography diagram illustrates areas that may serve as potential sites to aid in stormwater management and help municipalities reduce CSO overflow events, as well as quickly illustrates zones with potential access and the likely ease or difficulty in adding future access along the greenway length.

Segments that are very high or low above adjacent grades will require very long ramps and may prove infeasible or costly for new access. Segments that are level with adjacent grade or close to it are the best candidates for future access. The diagram also reveals that access from the north and south may not always be equal due to variable conditions on one side or the other.

Finally, the edge topography provides high level view of areas along the greenway with potential for erosion. On the site walk the team observed that the verge of the tracks are generally vegetated and in good condition.
As a result of the railroad legacy the Essex Hudson Greenway at times is cut into the earth, elevated on fill or is on a level plane.

These topographic relationships inform planting and maintenance, erosion potential, drainage, compatibility with stormwater management initiatives, and potential for user access points.
Removal of invasive plants or other vegetation during design would need to mitigate erosion potential in steeper areas. Areas cut into stone would need to be checked periodically for stability. Providing access at locations desired by the community can also preclude people from scrambling up steep slopes and creating footpaths on their own that would encourage erosion. Where such connections cannot be made then the design may consider fencing along segments of the greenway to discourage undesired pathways that would contribute to erosion.

Segments that are very high or low above adjacent grades will require very long ramps and may prove infeasible or costly for new access. Segments that are level with adjacent grade or close to it are the best candidates for future access.
TOPOGRAPHY
EXPERIENCE

MP 6.85 (KEARNY)

MP 7.35 (KEARNY)

MP 4.10 (SECAUCUS)
GREENWAY PARCEL WIDTH
EXPERIENCE

The width of the greenway from property line to property line varies along its length. Most typically the greenway measures between 90 and 120 feet in width. In some locations, such as either side of the Passaic, the property is broader as the topographic conditions required greater widths to provide adequate space to grade out steeper slopes. Likewise, in Jersey City the property is much wider where a former spur peeled off the main tracks and joined up with the NJ Transit.
While the width does not vary dramatically, the usable width does. In some instances the land on either side of the tracks is relatively flat creating broad open space that are compatible with a wide array of active and passive recreation options. More commonly the rail alignment is on a berm with side slopes falling away, or in a valley with slopes rising up to meet the grade above. In the Meadowlands the landscape meets the water’s edge and a portion of the property is actually below the water. The difference in the functional width will greatly inform the programmatic opportunities that are possible and how well the design can respond to community needs.
The greenway corridor traverses over or under 30 bridges along its length. Similar to how the topography surrounding the greenway rises and falls, roughly half of the bridges carry the greenway on a structure over a feature or obstacle (overpasses & bridges), while others are allowing the trail to pass under a road, railway, or pipeline that crosses the greenway corridor (underpasses).
There is quite a large degree of variation in the design of the bridges that adds interest and these bridges will serve as landmarks along the greenway route. Some bridges have wood ties supported by steel trestles, while others are concrete structures with ballast surfaces. All bridges will need design updates to include appropriate railings and bicycle/pedestrian compatible decks. A more fully detailed assessment of the current structural conditions is included in the appendix of this report.

The bridges provide the ability to travel long distances without stopping for crossing traffic or natural features. The bridges provide freedom of movement, spectacular views and unique vantage points, industrial character, and connectivity.
USER EXPERIENCE

People have varied and dynamic interests. On weekday mornings a user may be a commuter. In the evening that same user may take their children to the greenway to run and play, while weekends may include trips to the Meadowlands to birdwatch or cast a line. Designing for this diversity creates a greenway layered with opportunities for movement, recreation, and connection that has broad appeal for the many communities along its length.
This diagram envisions a day in the life of different users of the greenway. However, the greenway offers infinite possibilities that will be defined by the users themselves.
A trip along the greenway will change from day to day as the natural environment showcases its majesty through spring, summer, fall and winter.

Daylight will vary as dappled light filters through trees early in the morning and pastel sunsets mark the end of day. There are, however, several dramatic moments and special features along the greenway that rise up and catch one’s attention regardless of the time of day or season. The historic Benson Street Station, now a private residence, has a distinct identity and siting that harkens back to the railroad’s legacy. Views from bridges provide a bird’s eye perspective of the Second, Passaic, and Hackensack Rivers. The steep cut in the Kearny Gulch provides a sense of enclosure and is juxtaposed to the openness of the adjacent Passaic River Bridge. Elevated topography and low vegetation in the Meadowlands create a feeling of expansiveness that is rare and unexpected in urban environments. These moments play a special role in the greenway experience and should be preserved and celebrated in the design.
KEY MOMENTS
EXPERIENCE
KEY MOMENTS
EXPERIENCE
Future planning, design, and outreach activities will need to coordinate with appropriate governments and regulatory agencies. The Essex Hudson Greenway spans nearly nine miles from Essex County in the west to Hudson County in the east. Along its length it passes through numerous neighborhoods, parks, and municipalities and it also crosses the Meadowlands which is managed by the New Jersey Sports and Entertainment Authority (NJSEA). The greenway crosses over and under state and federal highways as well as other active passenger and freight rail lines. Its course
takes it through sensitive wetlands and over rivers – including a (currently inoperable) drawbridge which allows for the waters of the Hackensack River to remain navigable. Parcel maps show that several townships and boroughs own properties adjoining the greenway and these may benefit from a common landscape management approach.
The Essex Hudson Greenway passes through a wide range of land use categories. This diversity speaks to the unique qualities and characters of the municipalities and open spaces along its length.

In Montclair, Glen Ridge, and Bloomfield the route is bordered mainly by residential properties with some mixed residential, and pockets of commercial mixed use. These land uses are reflected in the vegetation along the length of the greenway with many mature trees bordering the line. Moving east to Belleville and Newark the properties bordering the greenway tend to be more commercial and industrial in nature. Tree canopy becomes sparse as paved lots servicing these parcels occupy the lands along the greenway’s margin. The exception in this area is where the greenway passes through Belleville/Branch Brook Park with its dense vegetation and also toward the east where the tracks rise up on to cross over the Passaic and the steep slopes have been left alone to grow larger trees. In Kearny the greenway passes through an area mainly composed of mixed residential, but as one approaches the Kearny Marsh and Hackensack River the land use changes dramatically to large blocks of industrial parcels on one side with freshwater wetlands on the other. Beyond these lands the greenway emerges as a skinny spit of land in open water of the Hackensack River. Views are immense in this segment as tree canopies give way to open skies, watery horizons, and distant disturbed landscape that include former landfills and industrial sites. The greenway lands in the marshy wetlands of Secaucus and Jersey City amid rattling thunder of active rail lines and the buzz of interstate traffic overhead. Trees are sparse as salty floodwaters keep trees at bay. Lands filled over the last centuries provide space for tree canopies to emerge among the marsh lands. To the east, beyond the web of active rail lines and interchanges, lies the mixed residential neighborhoods and commercial corridors of Jersey City.
In Montclair, Glen Ridge, and Bloomfield the route is bordered mainly by residential properties with some mixed residential, and pockets of commercial mixed use.

In Belleville and Newark the properties bordering the greenway tend to be more commercial and industrial in nature.
As one approaches the Kearny Marsh and Hackensack River the land use changes dramatically to large blocks of industrial parcels on one side with freshwater wetlands on the other.

The greenway lands in the marshy wetlands of Secaucus and Jersey City amid rattling thunder of active rail lines and the buzz of interstate traffic overhead.
GIS data from the last census reveal great diversity in the communities and neighborhoods along the length of the greenway. Understanding this diversity is important, especially as the planning and design of the greenway advances, to ensure that a representative mix of residents have the opportunity to share their ideas and provide input in the process. Not surprisingly, one data point that is common across these communities is that a low percentage of people bicycle to work. Beyond this there is wide variation in income, levels
of poverty, percentage of renters, age of family members, and whether English is spoken in the home. These factors suggest that outreach efforts will need to be conveniently located to residents and that the promotion of outreach events and presentations will benefit from interpretation and translation to other languages. The design process will need to be responsive to these communities while also working to create a cohesive greenway that spans nearly nine miles.

Note: This map indicated 2018 data.
One of the greenway’s most powerful attributes is its ability to create connections at individual, community, and regional scales. In addition, the greenway is able to create these connections in an area where communities are separated from each other by major rivers and highways with few direct or safe alternatives that are not dependent on transportation via motor vehicles.

Once on the greenway the connectivity that it provides is direct and offers long stretches uninterrupted by cross streets. Existing access points, where the greenway crosses streets at grade, are well distributed along its length and provide ample access from adjacent neighborhoods and commercial areas. For much of the greenway, where the greenway runs through communities, access points are readily available to residents within a quarter mile walk. In some areas the walking distance is greater, but not typically more than a half mile. These areas may be considered for new access points in the future design. Expanding the local capture area to a mile radius, which is a quick distance to cover on a bicycle, shows that all portions of adjacent communities have good access to the greenway.

The diagrams that follow in this section illustrate the positive impact on daily life that the greenway can have. The greenway has the ability to connect people to schools and work as well as numerous parks and commercial centers. This connectivity can improve people’s employment prospects, fitness and health, access to schools and medical care, and strengthen relationships with friends and family across town or across a the river. Finally, the greenway presents new experiences for people via connections to regional trail networks as well as significant connectivity to public transportation routes.
EXISTING ACCESS CONNECTIONS

As can be seen from the existing access diagram on the next page, there are numerous potential access points to the greenway from public streets, except in the Meadowlands section. The design will need to assess where additional access points are needed for ease of use and where they are feasible based on existing conditions.

The greenway access diagram depicts existing and potential access points to the greenway and each existing and potential entry point is documented in the access table. Points indicated with a green box show where the existing tracks intersect a crossing roadway at grade. These points provide easy access for future greenway users from the street, sidewalks, or bike lanes. They also serve as the most likely points of entry for maintenance and emergency services vehicles. At other locations the track is elevated above, or sunken below the crossing roadway. In these locations introducing new entrances to the greenway will be more challenging due to the height differential between the track and street. Long ramps would be needed to create accessibly sloped pathways at elevated or depressed locations. For example, if the difference in grade is 20’ between the bridge and greenway then a universally accessible ramp at 1:20 slope would need 400’ of length to meet grade, or if steepened to a 1:12 slope (the maximum for an ADA accessible slope) then the ramp would still need 285’ of length and would require handrails and level landings at 30’ intervals.

In some locations an adjacent street runs parallel to the tracks for a short distance, or a street may dead end into the tracks. These locations may or may not serve as good entry points depending on the elevation of the road in relation to the elevation of the tracks. Finally, the diagram shows where service roads intersect the greenway. These primarily occur in the Meadowlands and Jersey City sections of the greenway. While some of these service roads may be able to provide access to the greenway from the community a number of them exist exclusively to serve industrial site. These are potential locations for vehicles entering and exiting the greenway where the design will have to be cognizant of potential bicycle/pedestrian/vehicle conflicts. Likewise, access from and/or to these parcels may be negotiated as part of the acquisition process.
Existing at grade crossings provide easy access to the greenway. Improvements include signs or signals, and resurfacing to provide safe crossings.

Where dead end streets are close to the grade of the greenway there is potential to add access with short ramps or minor changes to paving.

In order to add access at streets where the greenway is elevated above the street a ramp will be needed. The height of the greenway will determine ramp length and feasibility.

In order to provide access from elevated streets a ramp down to the greenway would be needed.
At some locations the track is elevated above, or sunken below, the crossing roadway. In these locations introducing new entrances to the greenway will be more challenging.
Points where the existing tracks intersect a crossing roadway at grade provide easy access for future greenway users from the street, sidewalks, or bike lanes.
The greenway can provide access to existing trails integrating into regional connections. Trail advocates for the East Coast Greenway and September 11 Memorial Trail have long sought a safe route through this region.
Access across the Passaic and Hackensack Rivers and Meadowlands, especially for bicyclists and pedestrians, is limited and as a result residents are disconnected and unable to easily access open space and other resources that may be just a short distance physically, but take considerable travel time. The greenway has a potential to establish those connections unlocking the existing open spaces for new users.
ACCESS FROM SCHOOLS
CONNECTIONS

Access from Schools

- Essex Hudson Greenway
- Existing at Grade Road Crossing
- Cross Street Dead Ends at Tracks
- Greenway Above Street
- Greenway Below Street
- Street Adjacent to Tracks
- Service Road
- Parks and Open Space
- Wetlands
- Water Body

- Municipality Border
- 1/4 mile Radius
- 1 mile Radius
- Schools
There are multiple schools located in proximity of the greenway. Ensuring that the greenway is easy to access is key to its success.
ACCESS TO COMMUNITY CONNECTIONS

Transportation Network

- **Essex Hudson Greenway**
- **Existing at Grade Road Crossing**
- **Cross Street Dead Ends at Tracks**
- **Greenway Above Street**
- **Greenway Below Street**
- **Street Adjacent to Tracks**
- **Service Road**
- **Parks and Open Space**
- **Wetlands**
- **Water Body**

Municipality Border

Arts
- Montclair Art Museum
- Bow Tie Claridge Cinemas
- Essex Fine Arts Gallery
- Wellmont Theater
- Westminster Arts Center
- West Hudson Art and Theater Company
- Mana Contemporary
- Loew’s Jersey Theatre

Historical
- Bloomfield Historical Society
- Stuart Richardson House (Frank Lloyd Wright)
- Benson St Station
- Essex City Isolation Hospital/
 Garden State Center Campus
- Tiffany Manor
The Essex Hudson Greenway has the ability to link the many municipalities it traverses and their residents in a way that the existing transportation system of roads, buses, and trains does not. Additionally, because the greenway is frequently above or below the grade of the intersecting roads the users of the greenway will have the benefit of travel via a route that is protected from vehicles and avoids the stop and go traffic of the street grids. It does
this while providing an incredible route through shaded woods, working industrial areas, and inspiring natural spaces. Finally, there is potential for the greenway to provide better bicycle and pedestrian access to commuting opportunities at Journal Square and Secaucus Junction as well as the light rail station at Branch Brook Park.

The Essex Hudson Greenway has the ability to link the many counties it traverses and their residents in a way that the existing transportation system of roads, buses, and trains does not.
The Essex Hudson Greenway travels through an ecologically diverse and visually rich series of landscapes. In the west the landscapes are defined by wood tree canopy that is advancing into the old rail corridor. In the east the greenway glides through rich salt marshes and glades of phragmites with osprey soaring overhead. The planning, design, and implementation of the greenway will need to be sensitive to the valuable ecological resources that provide habitat, water filtration, and flood mitigation as well as an inspiring human experience. The implementation also presents the opportunity to repair lands degraded by development, pollution, and human intervention through a design process that celebrates and enhances the ecological function of these lands.
ECOLOGICAL GRADIENT

ENVIRONMENT

Along its way the greenway traverses a diversity of land types and habitats. The greenway can play a role in connecting fragmented habitats and providing a linear corridor for plants, animals, insects, and other organisms.

In the west it moves through the wooded residential landscapes of Montclair, Glen Ridge, and Bloomfield and Branch Brook Park and Belleville Parks, where this canopy provides shade, habitat, and enjoyment to the communities and ecological systems of these
areas. It crosses rivers, including the Second, Passaic, and Hackensack whose edges have been pushed and pulled, cut and filled, hardened, paved, and built out over centuries of development along their shores. Further to the west of Montclair lies the Eagle Rock Reservation which, with its dense forested canopy, provides a glimpse of what much of the land in this area might have looked like from an ecological perspective. Today, the lands along the greenway are highly fragmented by lawns, roads, power lines, and buildings.
While the greenway will not change this overarching urban context it can potentially play a role in connecting some of these fragmented habitats and providing a linear corridor for plants, animals, insects, and other organisms. This connectivity may provide enough access to disconnected habitat and breeding partners to make some of the lands along its length more viable habitat.
Further to the east the greenway passes through the ecologically rich wetlands and riverine environments of the Meadowlands. This landscape is visually stunning and, while it has been modified and manipulated over time, it still provides incredible habitat for plants and animals, and at a landscape scale that is uncommon in the dense urban areas of New Jersey and New York.
ECOLOGY AND NATURAL FEATURES
ENVIRONMENT

Ecology and Natural Features

- Essex Hudson Greenway
- Artificial Lakes
- Natural Lakes
- Streams And Canals
- Tidal Rivers, Inland Bays, Etc.
- Recreational Land
- Athletic Fields (Schools)
- Bridge Over Water
- Upland Rights-of-way Undeveloped

- Deciduous/mixed Shrubland
- Deciduous Forest
- Bare Exposed Rock, RockSlides, Etc.
- Old Field (< 25% Brush Covered)
- Stormwater Basin
- Phragmites Dominate Old Field
- Altered Lands/ Transitional Areas
- Wetlands: Deciduous Scrub/ Shrub
- Wetlands: Deciduous Wooded
The existing vegetation along the greenway includes a high number of aggressive and invasive species as well as a mix of native species. This is typical of rail corridors as the thin band of vegetation provides an edge condition where invasive species tend to thrive.

The connectivity of rail lines also provides an ideal opportunity for invasive species to spread along its length and the cessation of rail operations has provided opportunities for plants to spread into the rocky railroad bed itself. The design of the greenway will likely need to approach the planting as a landscape restoration project and take on incremental changes that allow for the successful establishment of native species that match with design goals and with a process that allows for these areas to become well established. By taking an incremental approach to invasive removal the implementation of the greenway can stabilize segments and normalize their maintenance rather than attempting to manage invasive across large areas which can prove a challenge for landscape managers.

The length of the greenway includes upland ridges, cut valley, tree lined communities, paved industrial areas, and wetlands and marshes. These variable conditions provide great opportunities to select plantings that match well with the variable light and moisture requirements, as well as the slopes that require vegetative cover to manage erosion potential. These plants can add shade, habitat, and character to the greenway and match with the communities’ preferred programmatic goals.
Woods and wetlands may see the removal of invasive species and be restored with plants that enhance the ecology and enjoyment of the greenway.
The greenway has the ability to restore some of the ecological degradation along its lengths and serve as a seed bank and a model for enhancement in the lands beyond its edges. Wooded areas may be supplemented with additional species that enrich habitat and provide ecological diversity.

Treeless areas may be planted to regenerate canopies, or may remain open and be planted with meadow type species that are missing in many urban environments but vital to bird and insect populations.
Woods and wetlands may see the removal of invasive species and be restored with plants that enhance the ecology and enjoyment of the greenway. Impervious surfaces may be removed to provide space for rainwater to be absorbed by the land once again. Of course, there is the prospect that this greenway and its design process can foster a generation of stewards of the land, build appreciation of the rich ecology of the area, and connect leaders that are currently divided by natural and man-made features.
Local populations of birds, fish, and other creatures build their home and nests in this area, while seasonally specific species of birds, fish, and insects pass through this area, or pause to nest, as part of their migratory patterns.

Within these landscapes wildlife endangered species may be found, along with sensitive breeding habitats.

Osprey, green heron, muskrats, groundhogs, fish, turtles, and many bird species were observed during the site visit. In order to preserve these spaces for endangered species, they are not identified on the overall public ecology maps. However, the design, program, and construction of the greenway must be respectful of these features and protect them as an inherent part of the
The flood hazard zones clearly show that portions of the community are at risk of flooding, and anything that can be done uphill in the watershed of these areas to reduce impervious surfaces, and delay and infiltrate runoff will help reduce flood risk and benefit community members.

Additionally, the mapping shows that nearly half of the greenway’s length is subject to storm surge from 0’-9’. Planning for the resiliency of this portion will be critical to the long-term success of the greenway. Portions of the greenway may be elevated to reduce exposure to flooding in the future and riprap edges may require reinforcement or redesign to prevent erosion and washout of the greenway.

Elements such as lighting, seating, paving, embankments, planting and other improvements in these low-lying areas will need to be able to withstand wave action and inundation and to come through the process unscathed.

More intensive investments, such as restrooms or maintenance yards should be located out of current and future flood zones. While such flooding might pose a concern for highly developed recreational facilities it actually matches well with the simplicity of design and construction of a greenway.
Portions of the greenway may be elevated to reduce exposure to flooding in the future and riprap edges may require reinforcement or redesign to prevent erosion and washout of the greenway.
Bridges at Branch Brook Park and the Passaic River cross over areas within the 100 year flood plain.
Nearly half of the greenway’s length is subject to flooding and sea level rise projections. Planning for the resiliency of this portion will be critical to the long-term success of the greenway.
Programming of the greenway should follow due diligence investigations to ensure that contaminants are understood prior to purchase and a remediation process is planned during the design phase.

The environment diagram shows areas of known contaminants and underground tanks, as well as areas of historic fill that are generally considered contaminated. There are sites adjacent to the greenway throughout its length with known contaminants, and given...
the industrial uses in many areas there are likely to be additional sites that have unknown contaminants. A separate environmental assessment (conducted by JM Sorge) includes additional information on areas of potential concern from prior use of the railroad and parcels adjacent to the line.

In addition to contamination the map also identifies two CSO outfalls located north and south of the greenway route at the Passaic River in Newark.
Along the length of the Essex Hudson Greenway public utilities are present in various forms and will inform the design and experience as users travel along the greenway.

Some utilities are highly visible, such as power lines or overhead pipes, while others below grade are invisible to the eye and only appear on record documents as easements. These utilities are essential to the communities and the functionality of the systems that serve them. Utility services that were exclusive to the function of the railroad may be removed if they are no longer needed. Active utilities will require periodic vehicular access along the greenway to access and maintain them. The design of the greenway must be cognizant of this use and designed to accommodate the weight and size of vehicles that will be commonly used in maintaining these systems.

The utility plan shows locations of major utility crossing that pass over or under the greenway. Perhaps the most visible of all utilities are the overhead power lines that rise up above the treeless segments in the Meadowlands and Jersey City. More detailed information is provided on the detailed surveys. In addition to the existing utilities the greenway has the potential to aid the community by providing a corridor for new utilities that may include services such as telecommunications, fiber optics, or stormwater management. In evaluating the potential for any of these utilities the design would want to carefully consider any constraints or limitations that would accompany the siting of new utilities. For instance, the inclusion of utilities that come with restrictions on planting of trees may not be desirable as this would reduce other beneficial aspects of the greenway such as shade and absorption water that would impact urban heat island planning and green infrastructure goals.

The greenway itself will likely require few utility services. Restrooms and maintenance areas, if included, could be located in areas with existing services. The planting is assumed to be native or adapted plants that would not require irrigation or water services. Lighting, in locations may be included via LED lights with solar panels. The design assumes that the existing site is largely impervious and that stormwater systems are not required. Emergency call boxes can utilize solar power and cellular services. With this approach the greenway can limit the need to invest and maintain costly utility systems and can provide needed services with sustainable systems.
In addition to the existing utilities the greenway has the potential to aid the community by providing a corridor for new utilities that may include services such as telecommunications, fiber optics, or stormwater management.

Some utilities are highly visible, such as power lines or overhead pipes and will inform the experience as the user travels along the Greenway.
UTILITY INFRASTRUCTURE
ENVIRONMENT

Utility Infrastructure Locations

- Essex Hudson Greenway
- NJPDES Combined Sewer Overflow (CSO)
- Hydropower Generation Facilities
- Solid Waste Landfills Sites over 35 Acres
- Landfill Parcel Groups over 35 Acres
- Power Plants (NJ)
- Power Plants (NJ) Parcels
- Solar PV Community Projects
- Bridge
- Utility Crossing at Greenway
- High Tension Wire Corridor
In evaluating the potential for any of these utilities the design would want to carefully consider any constraints or limitations that would accompany the siting of new utilities.
The greenway has the potential to help communities mitigate CSO overflows through a reduction in impervious surfaces and through increased storage capacity. The extent of support that the greenway can lend to stormwater management goals will depend on the design and planning of the stormwater systems and the topography of the greenway. There is opportunity to have exposed bioswales and other types of green infrastructure to both manage water and create green space along the pathway, as well as additional
options including underground storage or permeable pavement. It is also important to note that in the future stormwater tanks or other subsurface structures may need to be excavated for maintenance and repairs which is why trees are generally not planted in close proximity. The stormwater management goals will need to be balanced with goals for shading, heat reduction, and user experience. A more detailed assessment of stormwater management is included in the appendix of this report.

In Bloomfield and Newark, where the impervious surfaces are visibly higher, stormwater management is particularly important, as runoff flows to the Passaic River.
BIBLIOGRAPHY

Bike Lanes:
Jersey City, NJ
City of Newark, NJ

Bus Routes:
NJ TRANSIT Bus Routes Currently Operating, 2018 (NAD83, NJSP feet)
2018/07/17
NJ Office of Information Technology, Office of GIS (NJOGIS)
http://njogis-newjersey.opendata.arcgis.com

Bus Stops:
New Jersey Bus Stops
2018/06/30
NJ Office of Information Technology, Office of GIS (NJOGIS)

Coastal FIRM Maps:
Federal Emergency Management Agency (FEMA)

CSO Locations:
Combined Sewer Overflow (CSO) for NJ, Edition 20180723 (Util_NJPDES_CSO) (Web Mercator ArcGIS Online Service)
2016/11/15
NJ Department of Environmental Protection (NJDEP)
https://www.nj.gov/dep/gis/geowebsplash.htm

Ecology & Natural Features:
NJDEP’s Administrative Environmental data for publication and use in public applications.

EHG Alignment:
Generated from acquisition maps supplied by OSI. It is not the final alignment and subject to change pending final acquisition and survey information from NFS.

EHG Parcel Width:
Generated referencing site visit photographs, acquisition maps and google earth imagery.

EHG Edge Topography:
Generated referencing site visit photographs and google earth imagery.
Features and Utilities:
NJ Department of Environmental Protection (NJDEP)
2018/09/27
https://www.nj.gov/dep/gis

Historic Fill:
Historic Fill For New Jersey, Series DGS04-7, Edition 20180314 (Geol_soil_historicfill) (Web Mercator ArcGIS Online Service)
2018/03/14
New Jersey Department of Environmental Protection
https://www.nj.gov/dep/gis/digidownload/zips/OpenData/Geol_soil_historicfill.zip

Impervious cover:
Applied Geographics, Inc.
2018/09/30
Impervious Surfaces of New Jersey, Edition 20180930 (Rast_impervious_surface)
The original analysis and data generated were done by Applied Geographics. The downloadable file geodatabases were assembled by NJDEP/DOIT/BGIS
https://www.nj.gov/dep/gis
“This (map/publication/report) was developed using New Jersey Department of Environmental Protection Geographic Information System digital data, but this secondary product has not been verified by NJDEP and is not state-authorized or endorsed.”

Known Contaminated Sites
Known Contaminated Site List for New Jersey (Envr_NJEMS_KCSL) (Web Mercator ArcGIS Online Service)
NJ Department of Environmental Protection (NJDEP)
https://www.nj.gov/dep/gis/geowebsplash.htm

Landuse, Ecology and Natural Features:
Land Use/Land Cover 2015 Update, Edition 20190128 (Land_lu_2015)
2019/01/28
NJ Department of Environmental Protection (NJDEP), Division of Information Technology (DOIT), Bureau of Geographic Information System (BGIS)

Language Spoken at Home:
U.S. Census Bureau, 2014-2018 American Community Survey 5-Year Estimates
Population 5 years and over; Speak a language other than English

Meadowlands District Boundary:
NJ Office of Information Technology, Office of Geographic Information Systems (NJOIT - OGIS)
Municipal Boundaries of New Jersey:
 Municipal Boundaries of New Jersey
 2020/04/10
 NJ Office of Information Technology, Office of GIS (NJOGIS)
 https://njogis-newjersey.opendata.arcgis.com/

New Jersey County Boundaries:
 County Boundaries of New Jersey
 2020/04/10
 NJ Office of Information Technology, Office of GIS (NJOGIS)
 https://njogis-newjersey.opendata.arcgis.com/

New Jersey Parcels:
 NJ Office of Information Technology, Office of Geographic Information Systems (NJOIT - OGIS)

New Jersey Water Bodies:
 New Jersey Department of Environmental Protection (NJDEP), Office of Information Resources Management (OIRM), Bureau of Geographic Information Systems (BGIS)
 2010/11/01
 National Hydrography Dataset (NHD) Waterbody 2002
 Trenton, NJ
 http://www.state.nj.us/dep/gis/digidownload/zips/statewide/nhdwaterbody2002shp.zip

Railroads:
 U.S. Department of Commerce, U.S. Census Bureau, Geography Division
 2016
 TIGER/Line Shapefile, 2016, nation, U.S., Rails National Shapefile
 http://www2.census.gov/geo/tiger/TIGER2016/RAILS/tl_2016_us_rails.zip

Rail Station Stops:
 NJ TRANSIT, PATH, PATCO and SEPTA Passenger Rail Station points, 2018 (NAD83, NJSP feet)
 2018/07/19
 Edition: Based on NJ TRANSIT data release of 2016-07-01. No change to data definition from previous release; data records have been updated and expanded.
 NJ Office of Information Technology, Office of GIS (NJOGIS)
 http://njogis-newjersey.opendata.arcgis.com

Roadways:
 U.S. Department of Commerce, U.S. Census Bureau, Geography Division
 2019
 TIGER/Line Shapefile, 2019, Series Information for the All Roads County-based Shapefile
Schools:
School Point Locations of New Jersey (Public, Private and Charter), NJ State Plane NAD83
2018/12/19
NJ Office of Information Technology, Office of GIS (NJOGIS)

Sea Level Rise:
Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), Office for Coastal Management (OCM)
2016
NOAA Office for Coastal Management Sea Level Rise Data: Current Mean Higher High Water Inundation Extent
https://www.coast.noaa.gov/slr

Trails:
New Jersey State Park Service - Parks and Forests Trail System, Edition 20190605 (Land_use_trails) (Web Mercator ArcGIS Online Service)
2019/06/05
NJ Department of Environmental Protection (NJDEP)
https://www.nj.gov/dep/gis/digidownload/zips/OpenData/Land_use_trails.zip

Tree Canopy:
The National Land Cover Database 2011 (NLCD2011)
USDA Forest Service Remote Sensing Applications Center

Underground Storage Tanks:
Underground Storage Tanks, New Jersey (Envr_NJEMS_site_ust) (Web Mercator ArcGIS Online Service)
2020/08/27
NJ Department of Environmental Protection (NJDEP)
https://www.nj.gov/dep/gis/digidownload/zips/OpenData/Envr_NJEMS_site_ust.zip
BIBLIOGRAPHY
(CONTINUED)

Nesting Ospreys

Monarch Butterfly

Branchbrook Park

Saltmarsh Sparrow

Muskrat
Winter Flounder

Diamondback Terrapin
St. John, James. “Malaclemys Terrapin (Diamondback Terrapin) 1.” Flickr, Yahoo!, 6 Nov. 2014, www.flickr.com/photos/jsjgeology/15697462306/in/photolist-pV8ADQ-e58LgH-e5aftM-4kLNve-9JMXpC-s8uJm9-owv9iM-6w1ADq-6vWq2e-jHw4z-GnoqtX-nX1Nrm-nECWap-6w1B47-xcT9bq-4kQFAC-eegQrc-o3i1mH-8dhKeJ-8despx-5qAU8B-cnPo1W-993yst-2jneWHu-a7eHjx-V4mzqR-cibyRs-cibz3G-8dhJQ1-ZisNoY-a48XX8-3mH54W-cM1C7E-efBnyK-8dhJpG-dhSuSb-fLF6Qk-5RtRgD-8hq9Mc-2iN6QK1-9JK95k-axcYH6-nw8jiG-YWdQcv-nw86Bh-nNjF9T-afXgBw-9JK97t-YDqWfG-dB63P5.

Northern Harrier
Young, Susan. “Northern Harrier.” Flickr, Yahoo!, 4 Dec. 2016, www.flickr.com/photos/95782365@N08/31417315915/in/photolist-PSeXsB-fnjfZT-DKLjxK-CNfZnN-2jjsMDi-BCcd2y-FnxnDQ-2duuUrF-So2iWu-eh6QWY-Qo2u1y-2iccejL-2coyEad-TgbQsZ-qoZQX5-M8VJSH-CNnzBg-JLrfxW-28b4oLg-DBvbP2-26UCuYR-CgpUAg-RaGjTx-2iVs2w9-2iVscpv-2etskiZ-2iVnK8b-2iVsdE-26jAg3M-BxdcfB-2jqEoBM-dAdTno-a6WS58-FMiQuL-22ForgA-4nJBMG-23LeGsV-qL5WCU-rNRNck-7om6k3-5Ffiv8-qBdzQh-GXMWPa-mmhmkH-TMKEvdcv9JtN-qETexU-e4FUex-2jqBCDn-2iVrSZu.
During the development of the Framework Plan MNLA and its consultants held regular meetings with OSI and New Jersey Bike Walk Coalition. In addition, meetings were held with a number of organizations and entities. The following is a list of site visits and meetings (with entities other than OSI and New Jersey Bike Walk Coalition) that MNLA attended during the preparation of the Framework Plan. It is important to note that the Framework Plan was developed from May to August 2020 during the Covid19 Pandemic. All meetings, except for site visits, were conducted remotely via teleconference. MNLA’s records include the list of invited attendees, however, MNLA was not the organizer of most meetings and was not able to verify the actual attendance of all invited participants.

Meeting Subject: Environmental Assessment Coordination Call

Meeting Date: April 29, 2020

Attendees:
- Peter Karis (OSI)
- Dene Lee (OSI)
- Eve Boyce (OSI)
- Molly Bourne (MNLA)
- William Hart (MNLA)
- Dan Sepsy (MNLA)
- Peter Sogre (JM Sorge)

Meeting Subject: Environmental Assessment Coordination Call

Meeting Date: May 26, 2020

Attendees:
- Peter Karis (OSI)
- Dene Lee (OSI)
- Eve Boyce (OSI)
- Molly Bourne (MNLA)
- William Hart (MNLA)
- Dan Sepsy (MNLA)
- Peter Sogre (JM Sorge)
Meeting Subject: Essex Hudson Greenway Site Walk Day 1 – Meadowlands, Kearny & Jersey City
Meeting Date: May 27, 2020
Attendees:
• Peter Karis (OSI)
• Dene Lee (OSI)
• Bob Anderberg (OSI) – Jersey City Side
• Byron Nicholas (Hudson County)
• Francesca Giarratana (Hudson County)
• Molly Bourne (MNLA)
• William Hart (MNLA)
• Dan Sepsy (MNLA)
• Michael Dannemiller (NV5)

Meeting Subject: Essex Hudson Greenway Site Walk Day 2 – Newark to Montclair
Meeting Date: May 28, 2020
Attendees:
• Peter Karis (OSI)
• William Hart (MNLA)
• Dan Sepsy (MNLA)
• Yelena Zolotorevskaya (MNLA)

Meeting Subject: Map Review of East End w. Hudson County
Meeting Date: June 4, 2020
Attendees (invited):
• Dene Lee (OSI)
• Neil Jordan (OSI)
• Bob Anderberg (OSI)
• Terrance Nolan (OSI)
• Eve Boyce (OSI)
MEETING RECORDS
(CONTINUED)

- Byron Nicholas (Hudson County)
- Francesca Giarratana (Hudson County)
- Thomas Malavasi (Hudson County)
- William Hart (MNLA)

Meeting Subject: New Jersey Bike Walk Coalition Check in

Meeting Date: June 8, 2020

Attendees (invited):
- Eve Boyce (OSI)
- Peter Karis (OSI)
- William Hart (MNLA)
- Molly Bourne (MNLA)
- Dan Sepsy (MNLA)
- Cyndi Steiner (New Jersey Bike Walk Coalition)
- Deb Kagan (New Jersey Bike Walk Coalition)
- Suzanne Donovan (OSI)
- Preston Pinkett

Meeting Subject: East End Site Visit with Hudson County

Meeting Date: June 16, 2020

Attendees:
- Dene Lee (OSI)
- Bob Anderberg (OSI)
- Francesca Giarratana (Hudson County)
- Thomas Malavasi (Hudson County)
- Will Hart (MNLA)
Meeting Subject: Essex Hudson Greenway Project Call w. NJSEA
Meeting Date: June 17, 2020
Attendees (invited):
• Suzanne Donovan (OSI)
• Terrence Nolan (OSI)
• Eve Boyce (OSI)
• Dene Lee (OSI)
• Sara Sundell (NJSEA) – Director of Land Use Management and Chief Engineer
• Sharon Mascaro (NJSEA) – Deputy Director of Land Use Management and Deputy Chief Engineer
• Mia Petrou (NJSEA) – Principal Planner
• Gabrielle Bennett-Meany (NJSEA) – Senior Natural Resource Specialist
• Brian Aberback (NJSEA)
• William Hart (MNLA)

Meeting Subject: Jersey City CSOs
Meeting Date: June 19, 2020
Attendees (invited):
• Genevieve Tarino (GBD)
• Adam Zellner (GBD)
• Carol Mendez (GBD)
• Olivia Haller (GBD)
• Katherine Lawrence (Jersey City)
• Eve Boyce (OSI)
• Will Hart (MNLA)
Meeting Subject: Newark CSOs & Essex Hudson Greenway
Meeting Date: June 26, 2020
Attendees (invited):
• Genevieve Tarino (GBD)
• Adam Zellner (GBD)
• Olivia Haller (GBD)
• Carol Mendez (GBD)
• William Hart (MNLA)
• Eve Boyce (OSI)
• Melissa Sinisgalli (PVSC – Passaic Valley Sewer Commission)
• Eley Marques (PVSC – Passaic Valley Sewer Commission)
• Pallavi Shinde (City of Newark)
• Kimberly Singleton (City of Newark)
• Nathaly Agostos Filion (City of Newark)
• A. Tharm (City of Newark)
• Katherine Drury (HDR Inc.)

Meeting Subject: Essex Hudson Greenway Call w. New Jersey Transit
Meeting Date: July 10, 2020
Attendees (invited):
• Dene Lee (OSI)
• Eve Boyce (OSI)
• William Hart (MNLA)
• Richard Schaefer (NJ Transit)

Meeting Subject: Follow Up Call w. NJSEA
Meeting Date: July 14, 2020
Attendees (invited):
• Suzanne Donovan (OSI)
• Terrence Nolan (OSI)
Meeting Subject: Essex Hudson Greenway East End
Meeting Date: July 17, 2020
Attendees (invited):
- Dene Lee (OSI)
- Abe Antun
- Francesca Giarratana (Hudson County)
- Thomas Malavasi (Hudson County)
- Susan McCurie
- Donato Battista
- Daniel Desalvo
- Vanessa Weber
- Adam Zellner (GBD)
- Terrance Nolan (OSI)
- Bob Anderberg (OSI)
- Eve Boyce (OSI)
- Suzanne Donovan (OSI)
- William Hart (MNLA)

Meeting Subject: Essex Hudson Greenway Project and CSOs
Meeting Date: July 23, 2020
Attendees (invited):
- Lynda Jeanette (New Jersey Infrastructure Bank)
- Eve Boyce (OSI)
Meeting Subject: Essex Hudson Greenway Project Follow Up with OPPN

Meeting Date: August 12, 2020

Attendees (invited):

• David Pepe (NJ DEP)
• Dene Lee (OSI)
• Olivia Haller (GBD)
• Adam Zellner (GBD)
• Terrence Nolan (OSI)
• William Hart (MNLA)
PROJECTS AND ONGOING STUDIES

APPENDIX

ACCESS/TRANSPORTATION EASEMENTS/AGREEMENTS

- NJ Transit Portal Bridge Temporary Construction Access (2 way, 25’ wide for 4-5 years)
- NJ Transit Portal Permanent Maintenance Easement (15’ min. width)
- NJ Transit Tram Route (Rubber Tire Road - Two-way, 20-30’ wide)
- Malanka Landfill Access (57.5’ wide access road elevated +/- 16’ above ex. grade)
- Development Parcel B (two way truck traffic assumed with greenway crossing)
- PSG&E Maintenance Access
- NJ DOT Maintenance Access to 15X and NJ Turnpike
- E207 Portal Bridge Easement