Amendments to the Remediation Standards

June 9, 2021

Christina Page, Co-Moderator Training Committee, Chair Lynne Mitchell, Co-Moderator Training Committee Manager

Continuing Education Credits (CECs)

SRP Licensing Board has not yet approved

1 Regulatory CEC

4 Technical CECs

for this Training Class

Attendance Requirements:

 Webinar participants: must be logged-in for the entire session and answer 3 out of 4 poll questions (randomly inserted in the presentation)

CECs: What's the Process?

Since the SRPL Board <u>HAS</u> NOT approved CECs for the course:

- DEP compiles a list of "webinar" participants eligible for CECs and provides the list to the LSRPA
- LSRPA will email eligible participants a "Link" to an LSRPA webpage with certificate access instructions
- Certificates are issued by the LSRPA after paying a \$25 processing fee

CECs: What's the Process?

Since the SRPL Board Has <u>NOT</u> approved CECs for the course...

The certificate process will occur **AFTER** the course has been approved by the SRPL Board

Test Your Knowledge

Why are you here today?

- A. I'm not sure
- B. It's too hot outside

Test Your Knowledge

Why are you here today?

A. I'm not sure

B. It's too hot outside

C. Remediation Standards Training

Question and Answer Segments

- Questions will be read aloud by the moderator as time permits
- Please hold your questions until a presentation is complete
- Any questions are not addressed during the presentation, will be answered via email

Chat Function

- Please use the chat to advise the Department of technical issues with the presentation
- Please do not use the chat function to comment on presentations or to answer other attendee's questions

Remember!

Please fill out the Course Evaluation here:

https://www.surveymonkey.com/r/N3K7T53

Stay logged in all day Login in with only one device

Amendments to the Remediation Standards Training

June 9, 2021

NJ Licensed Site Remediation Professionals Association

Thank You to Our Partners

Upcoming LSRPA Courses & Events

➤ June 10, 2021 – Aspiring Professionals Series: Borehole Geophysical Logging

Jim Peterson, PG, LSRP, Princeton Geoscience, Inc. Tim Hull, PG, LSRP, Princeton Geoscience, Inc.

➤ June 24, 2021 – LSRPA Member "Chat" Session

Candace Baker, LSRP and Association Treasurer
Kathi Stetser, PG, LSRP, Vice President, GEI Consultants and Vice-Chair of the Regulatory
Outreach Committee
Bill Hose, LSRPA Assistant Executive Director

➤ July 20, 2021 – Member Regulatory Roundtable (1 Reg/.5 Tech CECs)

Fill Material Guidance for SRP Sites

Rodger Ferguson, LSRP, PennJersey Env. Consulting

Upcoming LSRPA Courses & Events

➤ August 5, 2021 – 2021 Standards Rule: Issues and Application

Candace Baker, LSRP, Langan Engineering and Environmental Services, Inc., Michael Gonshor, LSRP, Roux Associates
Brandi Gray, LSRP, Langan Engineering and Environmental Services, Inc., Scott Drew, LSRP, Geosyntec Consultants

UPCOMING NJDEP TRAININGS

- **➤ June 15, 2021 Alternative Remediation Standards Technical Guidance**
- ➤ July 14, 2021 NJDEP/LSRPA Soil and GW Remedial Action Protectiveness/Biennial Certification Forms Training

Upcoming Event

BATTLE AT THE BEACH!
CORNHOLE TOURNAMENT

· BARBECUE · BAR · NETWORKING · · FIREWORKS ·

> AUGUST 26, 2021 4PM - 9PM JENKINSON'S NORTH 3 BROADWAY, POINT PLEASANT BEACH, NJ

THE DETAILS

TICKETS

\$120 PER PLAYER (MEMBER TEAM) \$140 PER PLAYER (NON-MEMBER TEAM) **TWO PLAYERS PER TEAM**

SPONSORS

JENKINSON'S WARD BOARDS YOUR COMPANY NAME COULD BE HERE!

CHARITY CORNHOLE
TOURNAMENT PROCEEDS
BENEFIT:

SPONSORSHIP OPPORTUNITIES AVAILABLE

Upcoming Event

During this time of the COVID-19 pandemic, we will be following CDC guidelines and NJ Executive Orders at this event, including practicing social distancing and using face coverings when necessary to protect health and safety.

Thank You!

Introduction and Summary

Dr. Swati Toppin, PhD, Rule Manager Bureau of Environmental Evaluation and Risk Assessment swati.toppin@dep.nj.gov

Committee Members

Judith Andrejko

Chelsea Bray

Bill Carp

Ann Charles

Carey Compton (retired)

Barry Frasco

Anne Hayton (retired)

Nicole Kalaigian

Allan Motter

Paul Sanders (retired)

Erica Snyder

Swati Toppin

Statutory Authority for the Remediation Standards

• Remediation Standards, N.J.A.C. 7:26D, adopted by the DEP on May 17, 2021

 Authority <u>Brownfield and Contaminated Site Remediation</u> <u>Act</u>, N.J.S.A. 58:10B-12

Today's Objectives

- Locating and navigating the Remediation Standards website
- Rule Subchapters
 - Appendices 6, 7, 8 and 9 will be covered in the ARS guidance training
- The <u>changes</u> in the Rule Amendment for the various exposure pathways
- Phase-in guidance and order of magnitude

Remediation Standards Website

https://www.nj.gov/dep/srp/guidance/rs/

Remediation Standards

Introduction to Remediation Standards

May 2021

These rules implement the provisions of the <u>Brownfield and Contaminated Site Remediation Act</u>, N.J.S.A. 58:10B-12, and other statutes, by establishing standards for the remediation of contaminated ground water, surface water, soil, soil leachate and indoor air. These rules supplement the requirements of the <u>Technical Requirements for Site Remediation rules</u>, N.J.A.C. 7:26E.

On June 2, 2008, the Department adopted new Remediation Standards rules at N.J.A.C. 7:26D. These rules were readopted without change on April 27, 2015. The soil remediation standards contained in those rules were effective on June 2, 2008. The ground water and surface water remediation standards were previously effective at N.J.A.C. 7:26E-1.13.

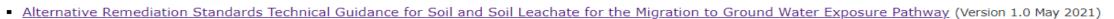
On September 18, 2017, the Department updated the soil remediation standards for 19 contaminants, as listed in N.J.A.C. 7:26D, Appendix 1, Tables 1A and 1B. The updated soil remediation standards reflect revisions to the toxicity information for these contaminants, as contained in the United States Environmental Protection Agency (USEPA) Integrated Risk Information System (IRIS) database (see www.epa.gov/iris), on which the soil remediation standards are based.

On May 17, 2021, the Department adopted amended rules at N.J.A.C. 7:26D. Included in the amended rules are soil and soil leachate remediation standards for the migration to ground water exposure pathway and indoor air remediation standards for the vapor intrusion exposure pathway. Also included is the replacement of direct contact soil remediation standards with separate soil remediation standards for the inhalation exposure pathway and the ingestion-dermal exposure pathway. In addition, the rule amendments Expands the existing interim remediation standard process to include soil and soil leachate for the migration to ground water exposure pathway, and ground water. Also, the existing process for updating remediation standards has been expanded to include soil and soil leachate for the migration to ground water exposure pathway, indoor air for the vapor intrusion exposure pathway.

Remediation Standards

- Remediation Standards, N.J.A.C. 7:26D (May 17, 2021)
- Remediation Standards Proposal (April 6, 2020)
- Remediation Standards Adoption Package (May 17, 2021)

Phase In/Order of Magnitude Guidance


The Department has revised the following guidance documents that will help remediating parties comply with the new remediation standards:

- Phase-In Period Guidance for the Use of Remediation Standards, N.J.A.C. 7:26D (Updated May 2021)
- Order of Magnitude Evaluation Guidance (Updated May 2021)

Basis and Background Documents

- Soil and Soil Leachate Remediation Standards for the Migration to Ground Water Exposure Pathway, Basis and Background (May 2021)
- Soil Remediation Standards for the Ingestion-Dermal Exposure Pathway, Basis and Background (May 2021)
- Soil Remediation Standards for the Inhalation Exposure Pathway, Basis and Background (May 2021)
- Indoor Air Remediation Standards for the Vapor Intrusion Exposure Pathway, Basis and Background (May 2021)

Guidance Documents

- Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Ground Water Exposure Pathway (Version 1.0 May 2021)
- Alternative Remediation Standards Technical Guidance for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways (Version 1.0 May 2021)
- Vapor Intrusion Technical Guidance (Version 5.0 May 2021) Appendix G provides guidance for the derivation and application of Alternative Remediation Standards for indoor air

Calculators

The Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator

Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator (Version 1.0 May 2021)

This includes the following calculators:

- Soil-Water Partition Equation Calculator
- Synthetic Precipitation Leaching Procedure Calculator
- Dilution-Attenuation Factor Calculator
- Fraction Organic Carbon Calculator

Soil Ingestion-Dermal Exposure Pathway Calculator

Soil Ingestion-Dermal Exposure Pathway Calculator (Version 1.0 May 2021)

Soil Inhalation Exposure Pathway Calculator

Soil Inhalation Exposure Pathway Calculator (Version 1.0 May 2021)

Vapor Intrusion Exposure Pathway Calculator

Vapor Intrusion Exposure Pathway Calculator (Version 1.0 May 2021)

The Extractable Petroleum Hydrocarbon Ingestion-Dermal Exposure Pathway Calculator:

• Extractable Petroleum Hydrocarbon Ingestion-Dermal Exposure Pathway Calculator (Version 1.0 May 2021)

This includes the following calculators:

- Category 2 Sample-Specific Residential
- Category 2 Sample-Specific Non-Residential
- Category 1 and 2 Alternative Remediation Standards for Soil (based on Land Use Exposure Scenarios)

Extractable Petroleum Hydrocarbon Information

• Guidance on the Human Health Based and Ecologically Based Soil Remediation Criteria for Number 2 Fuel Oil and Diesel Fuel Oil (September 2008)

...

Chromium

■ Chromium

Alternative or Interim Remediation Standards and or Screening Level Application Forms

- Alternative or Interim Remediation Standards and or Screening Level Application Form and Instructions
- Remediation Standards Notification Spreadsheet

NOTE: The following attainment and compliance documents which pertain specifically to the migration to ground water exposure pathway may be accessed at www.nj.gov/dep/srp/guidance/

- Volatile Organic Contamination including methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (TBA) derived from discharges of Petroleum Mixtures
 Posted 25 January 2009
- <u>Capping of Inorganic and Semi-volatile Contaminants for the Impact to Ground Water Pathway</u> (March 2014)
- <u>Capping of Volatile Contaminants for the Impact to Ground Water Pathway</u> (January 2019)

Remediation Standards Archive page

The Impact to Ground Water Soil Screening
Levels and Site-Specific Impact to Ground
Water Soil Remediation Standards have been
replaced with Soil and Soil leachate
standards for the Migration to Ground Water
(MGW) Exposure Pathway

Indoor Air Screening Levels replaced with Indoor Air Remediation Standards for the Vapor Intrusion exposure pathway

This has led to the alternative remediation standard procedure being expanded to include the soil and soil leachate standards for the MGW pathway, and indoor air standards for the vapor intrusion pathway

 Replacement of direct contact remediation standards with the ingestion-dermal and inhalation standards

 Definition of residential and nonresidential are now based on property use, not purported exposure

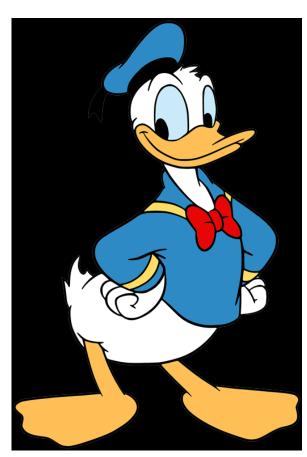
- Procedures have been established for developing interim remediation standards for the following:
 - interim soil and soil leachate standards for the MGW pathway
 - interim indoor air standards for the VI exposure pathway
 - interim ground water standards

- Procedures have been established for updating the standards for the following:
 - soil and soil leachate standards for the MGW pathway
 - indoor air standards for the vapor intrusion pathway
 - ground water remediation standards

- Chemicals have been deleted and added based upon routine detection, frequency of detection, routine analysis and available toxicity factors
- Numerical changes in new remediation standards have taken place due to updated toxicities, exposure assumptions and chemical and physical factors

Subsequent talks on the various exposure pathways will highlight the important changes for each pathway

Thank you!


Remediation Standards — N.J.A.C. 7:26D Overview of Subchapters 1 through 3

Barry Frasco, Ph.D., Assistant Director Hazardous Site Science Element

barry.frasco@dep.nj.gov

National Donald Duck Day

June 9, 1934 - First appearance of Donald Duck in a cartoon, "The Wise Little Hen."

Remediation Standards — N.J.A.C. 7:26D General Information

Subchapter 1

- 7:26D-1.1 Purpose
- 7:26D-1.2 Scope
- 7:26D-1.3 Construction and severability
- 7:26D-1.4 Applicability Includes phase in provisions
- 7:26D-1.5 Definitions

Ground Water Remediation Standards

Subchapter 2

- No substantive changes
- The Ground Water Quality Standards (N.J.A.C. 7:9C) are by reference the ground water remediation standards

Surface Water Remediation Standards

Subchapter 3

- No substantive changes
- The Surface Water Quality Standards (N.J.A.C. 7:9B) are by reference the surface water remediation standards

Remediation Standards — N.J.A.C. 7:26D

Questions?

Soil Remediation Standards for the Ingestion-Dermal Exposure Pathway

Erica Snyder, M.S. Bureau of Environmental Evaluation and Risk Assessment <u>erica.snyder@dep.nj.gov</u>

Soil Remediation Standards (SRS) for the Ingestion-Dermal Exposure Pathway

- 131 ingestion-dermal SRS for the residential exposure scenario
- 128 ingestion-dermal SRS for the nonresidential exposure scenario

What has changed since the rule proposal?

- Dermal absorption fractions (ABS_d) for 12 contaminants were adjusted to be consistent with USEPA
 - 11 of the affected contaminants went from an ABS_d of 0.1 to none
 - 1 contaminant (lindane) went from an ABS_d of 0.1 to 0.04
 - All 12 modifications resulted in ingestion-dermal SRS less stringent than the originally proposed value
- N.J.A.C. 7:26D Appendix 1 (Tables 1 and 2) and Appendix 11 (Table 1) updated

What has changed since the rule proposal?

- The proposed ingestion-dermal SRS for n-hexane and 4-methyl-2-pentanone (MIBK) were withdrawn due to inadequate toxicity information to derive health-based criteria
 - Proposed SRS based on HEAST RfDs which were both retired due to inadequate data to derive a chronic RfD
- N.J.A.C. 7:26D Appendix 1 (Tables 1 and 2) and Appendix 11 (Table 1) updated

What has changed since the rule proposal?

- The human health-based criteria for benzaldehyde, benzo(a)pyrene, and 1,2-dichloropropane were updated in N.J.A.C. 7:26D Appendix 1, Tables 1 and 2
 - These updates did not change the proposed SRS value

SRS for the ingestion-dermal exposure pathway vs. USEPA ingestion-dermal RSLs

- 14 ingestion-dermal SRS more stringent than USEPA RSLs
- 10 contaminants are due to the Department's toxicological hierarchy
 - Benzene, carbon tetrachloride, chlordane, chlorobenzene, 1,2dichlorobenzene, 1,2-dichloroethane, 1,1-dichloroethene, trans1,2-dichloroethene, methylene chloride, and xylene

SRS for the ingestion-dermal exposure pathway vs. USEPA ingestion-dermal RSLs

- 2 contaminants are due to the Department's Group C Carcinogen Policy
 - 2-methylphenol and 4-methylphenol
- 2 contaminants are not listed on USEPA's RSL Tables
 - 1,3-dichlorobenzene and tertiary butyl alcohol (TBA)

Hierarchy for Toxicity Source Information Ingestion-Dermal Exposure Pathway

- Tier 1: New Jersey Drinking Water Quality Institute (NJDWQI)
- Tier 2: USEPA's Integrated Risk Information System (IRIS)
- Tier 3: USEPA's Provisional Peer-Reviewed Toxicity Values (PPRTV), USEPA's Health Effects Assessment Summary Tables (HEAST), California Environmental Protection Agency (CalEPA), Agency for Toxic Substances and Disease Registry (ATSDR)

 Department policy used to develop health-based remediation standards, drinking water MCLs, ground water quality criteria, and human health-based surface water quality criteria

- Defined as "Possible Human Carcinogens" by USEPA under the 1986 Guidelines for Carcinogen Assessment
- Defined as having "Suggestive Evidence of Carcinogenic Potential" by USEPA under the 2005 Guidelines for Carcinogen Assessment

- If cancer toxicity factor available, carcinogenic healthbased criteria calculated using 1 x 10⁻⁶ cancer risk target
- Additional uncertainty factor of 10 applied to noncancer toxicity factor to account for potential carcinogenic effects when a cancer toxicity factor is unavailable

- N.J.A.C. 7:26D Appendix 11, Table 1 identifies 14 contaminants that are classified as Group C Carcinogens
- Uncertainty factor applied to noncancer RfD:
 - atrazine, 2-methyphenol, 4-methyphenol
- Cancer slope factor available to calculate carcinogenic health-based criteria:
 - butylbenzylphthalate, dibromochloromethane, beta-HCH, hexachloro-1,3-butadiene, isophorone, and 1,1,2trichloroethane

- NJDWQI/NJDEP RfD with Group C Carcinogen adjustment already incorporated:
 - 1,4-dichlorobenzene, 1,1-dichloroethane, MTBE, naphthalene, tertiary butyl alcohol (TBA)

Route-to-Route Extrapolation

- Use of route-to-route extrapolation restricted unless physiological-based pharmacokinetic (PBPK) modeling conducted in the generation of toxicity value
- N.J.A.C. 7:26D Appendix 11, Table 1 footnotes contain details for 10 oral toxicity values where route-to-route extrapolation was applied and whether its use was supported with PBPK modeling
 - Oral toxicity values for 3 contaminants (benzene, PCE, TCE)
 were supported with PBPK modeling

Mutagenic Mode of Action

- Mutagenicity refers to the capacity to induce or increase the rate of genetic change
- Some contaminants have been determined to have a mutagenic mode of action or early lifetime exposure component
 - Carcinogenic PAHs, TCE, vinyl chloride

SRWMP made the policy decision to not include mutagenic mode of action calculations in the development of SRS. No change from former rule.

Lead

- SRS for lead to remain unchanged from 2008 SRS
 - Residential ingestion-dermal SRS: 400 ppm
 - Nonresidential ingestion-dermal SRS: 800 ppm
- Department waiting for USEPA to update its national policy regarding lead
 - USEPA's Regional Screening Levels Tables and Regional Removal Management Levels Tables continue to use 400 ppm (residential) and 800 ppm (nonresidential)

Test Your Knowledge

True or False:

The SRS for lead have changed from the 2008 SRS:

A. True

B. False

Test Your Knowledge

True or False:

The SRS for lead have changed from the 2008 SRS:

A. True

B. False

Dioxin

- Term "dioxin" refers to a mixture of polychlorinated dioxin and furan congeners that are similar in structure and toxicity
- Ingestion-Dermal SRS added to N.J.A.C. 7:26D, Tables 1 and 2 for the residential (51 ppt) and nonresidential (810 ppt) land use exposure scenarios
 - SRS based on IRIS noncancer RfD (2012)
- Toxicity of mixture assessed in relation to 2,3,7,8-TCDD using congener specific toxic equivalency factors (TEFs)

Additional Information on the SRS for the Ingestion-Dermal Exposure Pathway

- Soil Remediation Standards for the Ingestion-Dermal Exposure Pathway, Basis and Background
- Soil Ingestion-Dermal Exposure Pathway Calculator

https://www.nj.gov/dep/srp/guidance/rs/index.html

Thank you!

Extractable Petroleum Hydrocarbons (EPH)

Nicole Kalaigian

Bureau of Environmental Evaluation & Risk Assessment nicole.kalaigian@dep.nj.gov

EPH Categories

- Category 1:
 - No. 2 heating oil and diesel fuel

- Category 2:-
 - heavier petroleum products
 - excludes lighter petroleum products (gasoline and mineral spirits)

Nos. 4 & 6 Heating Oil, Hydraulic Oil, Cutting Oil, Lubricating Oil

Crude Oil

Waste Oil, Unknown Petroleum Hydrocarbons

Waste Vehicular Crankcase Oil

Mineral Oil

Dielectric Fluid, Dielectric Mineral Oil, Transformer Oil

Changes

Former SRC

- Category 1 EPH
 - RDCSRC = 5,100 mg/kg
 - NRDCSRC = 54,000 mg/kg*
- Category 2 EPH
 - RDCSRC = sample specific*
 - NRDCSRC = sample specific*

May 2021 Remediation Standards

- Category 1 EPH
 - RDCSRS = 5,300 mg/kg
 - NRDCSRS = 75,000 mg/kg*
- Category 2 EPH
 - RDCSRS = sample specific*
 - NRDCSRS = sample specific*

*Product Limits

EPH Guidance & Calculator Options

12.

Evaluation of Extractable Petroleum Hydrocarbons in Soil Technical Guidance

Brief Description of Document

This technical guidance replaces the previous Protocol For Addressing Extractable Petroleum Hydrocarbons (EPH Protocol, Version 3.0, 9 August 2010)

Document:

Former health-based SRC calculator

Evaluation of Extractable Petroleum Hydrocarbons in Soil Technical Guidance [pdf 1.6 Mb] Version 1.0, Posted 6/20/2019

Extractable Petroleum Hydrocarbons Alternative Product Limit Calculator [xlsm 115 Kb] Version 1.1, Posted 12/3/2019

Extractable Petroleum Hydrocarbons Category 2 Health Based Calculator [xlsm 70 Kb] Version 1.0, Issued 6/2019

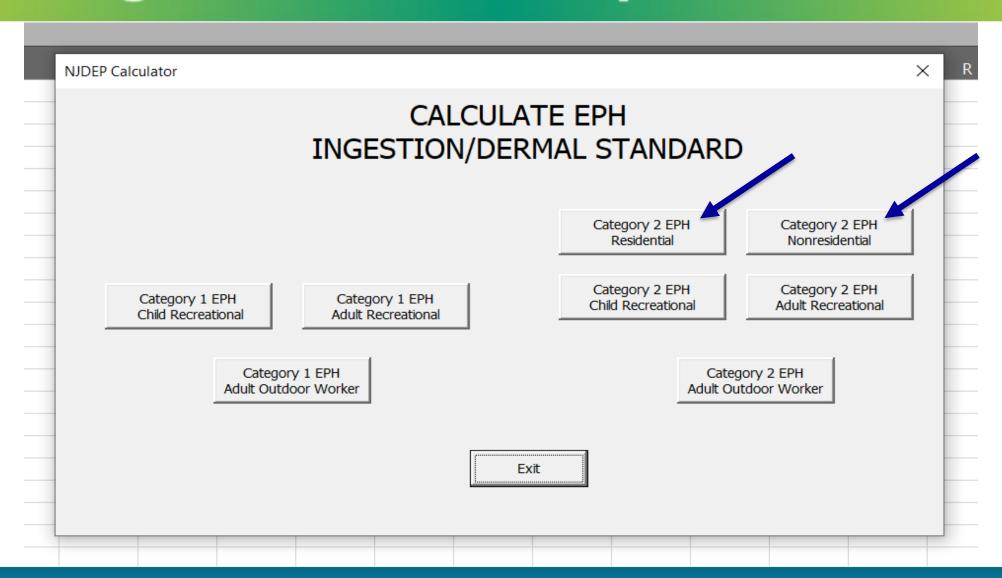
Extractable Petroleum Hydrocarbon Ingestion-Dermal Exposure Pathway Calculator [xlsm 70 Kb] Version 1.0, Posted 5/17/2021

Evaluation of Extractable Petroleum Hydrocarbons in Soil Response to Comments [pdf 238 Kb] Posted 6/20/2019

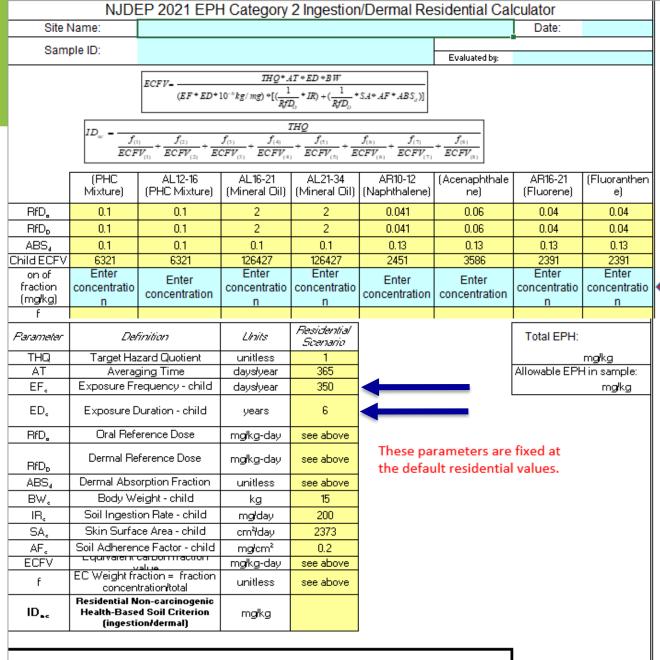
2021 Remediation Standards

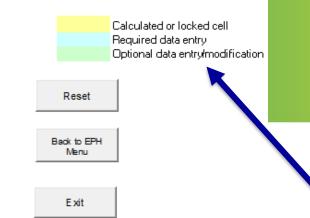
Response to Comments:

EPH Ingestion-Dermal Exposure Calculator


- Category 2 Sample-Specific Residential
- Category 2 Sample-Specific Nonresidential
- Category 1 and 2 Alternative Remediation Standards for Soil (based on land use exposure scenarios)

N.J.A.C. 7:26D Appendix 2 Equation 5:


Noncarcinogenic Ingestion-Dermal Human Health-Based Criteria for EPH



EPH Ingestion-Dermal Exposure Calculator

Enter EPH Concentration for each fraction. ND=0

EPH Category 2 Ingestion/Dermal Residential Soil Remediation Standard: mg/kg

NJDEP 2021 EPH Category 2 Ingestion/Dermal Residential Calculator

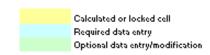
Site Name: Date:

Sample ID:

Evaluated by:

 $ECFV = \frac{THQ^{+}AT + ED + BW}{(EF * ED * 10^{+}kg/mg) * [(\frac{1}{RfD_{D}} * IR) + (\frac{1}{RfD_{D}} * SA * AF * ABS_{d})]}$

 $ID_{vv} = \frac{THQ}{\frac{f_{(1)}}{ECFV_{(1)}} + \frac{f_{(2)}}{ECFV_{(2)}} + \frac{f_{(3)}}{ECFV_{(3)}} + \frac{f_{(4)}}{ECFV_{(3)}} + \frac{f_{(5)}}{ECFV_{(6)}} + \frac{f_{(6)}}{ECFV_{(6)}} + \frac{f_{(7)}}{ECFV_{(6)}} + \frac{f_{(9)}}{ECFV_{(7)}} + \frac{f_{(9)}}{ECFV_{(9)}}$


	AL10-12 (PHC Mixture)	AL12-16 (PHC Mixture)	AL16-21 (Mineral Oil)	AL21-34 (Mineral Oil)	AR10-12 (Naphthalene)	AR12-16 (Acenaphthalene)	AR16-21 (Fluorene)	AR21-34 (Fluoranthene)
RfD.	0.1	0.1	2	2	0.041	0.06	0.04	0.04
RfD₀	0.1	0.1	2	2	0.041	0.06	0.04	0.04
ABS _a	0.1	0.1	0.1	0.1	0.13	0.13	0.13	0.13
Child ECFV	6321	6321	126427	126427	2451	3586	2391	2391
Concentratio								
n of fraction	334	2187	563	648	0	1098	422	96
(mg/kg)								
f	0.062453254	0.408937921	0.105272999	0.121166791	0	0.205310396	0.078908003	0.017950636
	0.002430234	0.400001021	0.105212000	0.121100101		0.203010000	0.010000000	0.011030030

Parameter	Definition	Units	Residential Scenario	
THQ	Target Hazard Quotient	unitless	1	
AT	Averaging Time	days/year	365	
EF.	Exposure Frequency - child	days/year	350	
ED.	Exposure Duration - child	years	6	
RfD.	Oral Reference Dose	mg/kg-day	see above	
RfD₀	Dermal Reference Dose	mg/kg-day	see above	
ABS ₄	Dermal Absorption Fraction	unitless	see above	
BW.	Body Weight - child	kg	15	
IR.	Soil Ingestion Rate - child	mg/day	200	
SA.	Skin Surface Area - child	cm²/day	2373	
AF.	Soil Adherence Factor - child	mg/cm²	0.2	
ECFV	Equivalent carbon fraction value	mg/kg-day	see above	
f	EC Weight fraction = fraction concentration/total concentration	unitless	see above	
ID	Residential Mun-carcinagenic Health-Bared Suil Criterian (ingestion/dermal)	mg/kg	5700	

Total EPH:
5348 mg/kg
Allowable EPH in sample:
5.70E+03 mg/kg

PASS

These parameters are fixed at the default residential values.

Reset

Back to EPH Menu

Exit

Enter EPH Concentration for each fraction. ND=0

EPH Category 2 Ingestion/Dermal Residential Soil Remediation Standard: 5700 mg/kg

RESULT DOWN HERE

Thank You

For questions regarding EPH:

william.carp@dep.nj.gov

nicole.kalaigian@dep.nj.gov

Inhalation Exposure Pathway Alternative Remediation Standards

Allan S. Motter
Bureau of Environmental Evaluation and Risk Assessment
allan.motter@dep.nj.gov

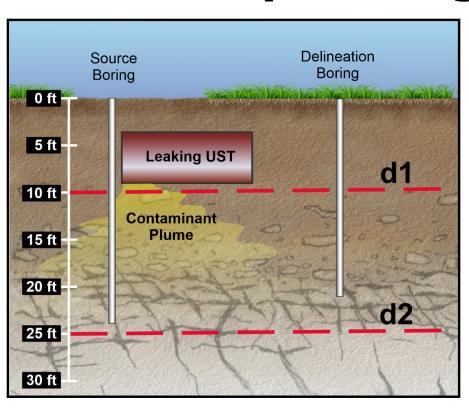
- Inhalation ARS based on physical properties does not require pre-approval from the Department prior to use (N.J.A.C. 7:26D-8.5)
- Technical Consultation with the Department is available upon request
- ARS Option details specified in N.J.A.C. 7:26D Appendix 7 and Alternative Remediation Standards Technical Guidance for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways

ARS options developed in accordance with N.J.A.C. 7:26D Appendix 7 III(b) (preapproval not required)

- Depth Range of Contamination
- Soil Organic Carbon Content (f_{oc})
- Fraction of Vegetative Cover (V)

Depth Range of Contamination

- Default 0 cm to infinity
- Effects Volatiles Only
- Determine contaminant depth
 - d1 = shallowest depth at Site or AOC where contamination exceeds default standard
 - d2 = deepest depth at Site or AOC where contamination exceeds default standard


Depth Range of Contamination

- Convert depths to cm
- Use d1 and d2 in the Department's calculator
- Provide the following information to the Department:
 - The resultant ARS
 - A description and basis of how the input parameters were selected
 - A description of any institutional and engineering controls
 - If depth starts at 0 cm, then no institutional control, otherwise need one

Depth Range of Contamination

- d1 = 10 feet
 - 10 feet * 12 inches/foot = 120 inches
 - 120 inches * 2.54 cm/inch = 304.8 cm
- d2 = 25 feet
 - 25 feet * 12 inches/foot = 300 inches
 - -300 inches * 2.54 cm/inch = 762 cm

Soil Organic Carbon Content (foc)

- Default 0.2% (0.002) kg/kg
- Effects Volatiles Only
- Determine f_{oc} and use in the Department's calculator
- Provide the following information to the Department:
 - The resultant ARS
 - A description and basis of how the input parameters were selected
 - A description of any institutional and engineering controls

Soil Organic Carbon Content (foc)

- Collect and analyze samples for determining f_{oc} in accordance with Department guidance
 - Minimum of three samples
 - Not in areas of high organic contamination interference
 - Representative of soil type and contaminant depth in AOC
- Analyze using Lloyd Kahn Method or equivalent

Test Your Knowledge

True or False:

When collecting samples to determine f_{oc} , the Department's guidance recommends a minimum of 3 samples.

A. True

B. False

Test Your Knowledge

True or False:

When collecting samples to determine f_{oc} , the Department's guidance recommends a minimum of 3 samples.

A. True

B. False

Soil Organic Carbon Content (foc)

- Average or lowest value (not less than 0.002):
 - Lowest if less than three samples
 - Lowest if difference is greater than an order of magnitude
 - Average if three or more samples and difference is less than an order of magnitude
- Calculator will determine appropriate f_{oc} if values are entered

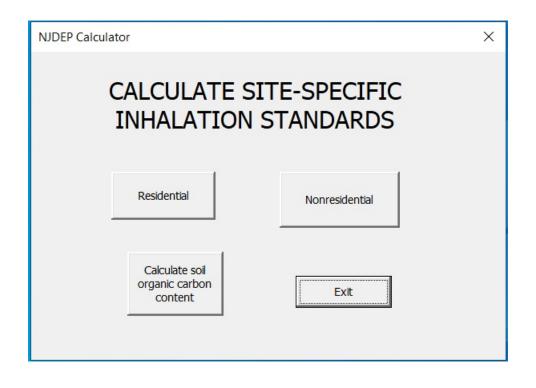
Fraction of Vegetative Cover (V)

- Default 50%
- Affects Particulates Only
- Determine V and use in the Department's calculator
- Provide the following information to the Department:
 - The resultant ARS
 - A description and basis of how the input parameters were selected
 - A description of any institutional and engineering control

Fraction of Vegetative Cover (V)

- Impervious surfaces (concrete, asphalt, buildings) are not considered in V
- Vegetation and bare soil are considered in V
- V (versus soil) must be maintained and monitored to be an effective engineering control
- V is the amount of soil covered by vegetation using standard ecological techniques (e.g., grid or plot sampling)

Fraction of Vegetative Cover (V)



50% Vegetation

50% Vegetation

100% Vegetation

	NJDEP 2021 Inhalation Soil Remediation Standard Calculator: Residential								
Site	Site Name: Generic Contaminated Site Date: 6/9/2021						9/2021		
Cont	aminant: N	laphthalene				-	CAS No.:	91	-20-3
	arriir fairte.						Evaluated by:	L	SRP
	nant Param					ameters:			
Parameter	Definition	Units	Value	I .	Parameter		Linits	Value	
IUR	Inhalation Unit Risk Factor	(μg/m³) ⁻¹	3.40E-05		θ,	Water-filled Soil Porosity	dimensionless (v/v)	0.23	
RfC	Inhalation Reference Concentratio	mg/m³	3.00E-03		Θ,	Air-filled Soil Porosity	dimensionless (v/v)	0.18	
D;	Diffusivity in Air	cm²/s	6.05E-02		f	(Fraction) Organic Carbon Content of Soil	dimensionless (w/w)	0.002	
D.	Diffusivity in Water	cm2/s	8.38E-06		p.	Dry Soil Bulk Density	g/cm³	1.5	
De	Apparent Diffusivity	cm2/s	4.46E-06		n	Total Soil Porosity	dimensionless (v/v)	0.41	
к	Soil Organic Carbon-Water Partition Coefficient	cm³/g	1.54E+03		Emission	n/Dispersion	n Parameter	rs:	
к,	Soil-Water Partition Coefficient	cm³/g	3.09E+00		Parameter	Definition	Units	Value .	
H	Henry's Law Constant	dimensionless	1.80E-02		Q/C	Inverse Concentration at Center of Source	(g/m²-s)/ (kg/m²)	86.6	
RL	Soil Reporting Limit	mg/kg	0.17		VF	Soil-to-Air Volatilization Factor	m³/kg	6.94E+04	
S	Water Solubility	mg/L	3.10E+01		TAVE	Time-averaged volatilization flux	mg/cm²/day	Optional Calculated	
C.,,	Soil Saturation Limit	mg/kg	1.00E+02		PEF	Particulate Emission Factor	m³/kg	1.67E+09	
Exposure	Parameter	s:	•						
Parameter	Definition	Units	Value -		Scenari	o Paramete			
EF	Exposure Frequency	days/year	350		Parameter	Definition	Units	Value -	If values entered,
ED	Exposure Duration	years	26	1	LL1	of	cm	Optional	click here to recalculate
ET	Exposure Time	hr/day	24	1 1	LL	of	cm	Optional	VF
LT	Lifetime	years	70		٧	Fraction Vegetative Cover	dimensionless	0.5	
Т	Exposure Interval	seconds	8.20E+08		Calculat	ted Inhalati	on Soil Crit	eria:	1.5 ()
AT	Averaging Time	days/year	365		Inh	Volatile, Cancer	mg/kg	5.7	
THQ	Target Hazard Quotient	dimensionless	1		Inh	Volatile, Noncancer	mg/kg	220	above Csa
TR	Target Cancer Bisk	dimensionless	1.00E-06		Inh,	Particulate, Cancer	mg/kg	140000	
					Inh,	Particulate, Noncancer	mg/kg	5E+06	> 1E+06 ppm

Soil Parameters:

Sui Paraineters.					
Parameter	Definition	Units	Value		
θ _w	Water-filled Soil Porosity	dimensionless (v/v)	0.23		
θ _a	Air-filled Soil Porosity	dimensionless (v/v)	0.18		
f _{oc}	(Fraction) Organic Carbon Content of Soil	dimensionless (w/w)	0.002		
Pb	Dry Soil Bulk Density	g/cm ³	1.5		
n	Total Soil Porosity	dimensionless (v/v)	0.41		

Scenario Parameters:

Parameter Definition		Units	Value
LL1	Depth of Top of Contamination	cm	Optional
LL	Depth of Bottom of Contaminantion	cm	Optional
V	Fraction Vegetative Cover	dimensionless	0.5

If values entered, click here to recalculate VF

Calculated Inhalation Soil Criteria:

Inh _{v,c}	Volatile, Cancer	mg/kg	5.7		
Inh _{v,n}	Volatile, Noncancer	mg/kg	220	11	
Inh _{p,c}	Particulate, Cancer	mg/kg	140000		
Inh _{p,n}	Particulate, Noncancer	mg/kg	5200000	>	

above Csat

>1E+06 ppm

Residential Inhalation Soil Remediation Standard:

Soil Parameters:

Juli Fara	Son Farantelers.					
Parameter	Definition	Units	Value			
θ _w Water-filled Soil Porosit		dimensionless (v/v)	0.23			
θa	Air-filled Soil Porosity	dimensionless (v/v)	0.18			
(Fraction) f _{oc} Organic Carbon Content of Soil		dimensionless (w/w)	0.003			
Dry Soil Bulk Density		g/cm ³	1.5			
n	Total Soil Porosity	dimensionless (v/v)	0.41			

changed

Scenario Parameters: depth range modified

Parameter	Definition	Units	Value	
LL1	Depth of Top of Contamination	cm	304.8	
LL	Depth of Bottom of Contaminantion	cm	7.62E+02	
V	Fraction Vegetative Cover	dimensionless	0.5	

entered, click here to recalculate VF

If values

Calculated Inhalation Soil Criteria:

				_
Inh _{v,c}	Volatile, Cancer	mg/kg	3.9E+09	above Csat
Inh _{v,n}	Volatile, Noncancer	mg/kg	1.5E+11	above Csat
Inh _{p,c}	Particulate, Cancer	mg/kg	140000	
Inh _{p,n}	Particulate, Noncancer	mg/kg	5200000	>1E+06 ppm
	i de la companya del companya de la companya del companya de la co			•

Residential Inhalation Soil Remediation Standard:

140000 mg/kg

CONTROLLED BY THE PARTICULATE CARCINOGENIC PATHWAY

Soil Parameters:

 θ_a

 f_{oc}

 ρ_b

n

Parameter	Definition	Units	Value
A	Water-filled	dimensionless	0.23
O _W	Soil Porosity	(v/v)	0.20

Air-filled Soil Porosity	dimensionless (v/v)	0.18
(F (:)		

Content of Soil Dry Soil Bulk

Density

Total Soil

Porosity

(Fraction) dimensionless Organic Carbon

0.003 changed

g/cm³ 1.5

(w/w)

dimensionless 0.41 (v/v)

Scenario Parameters: depth range modified

				_
Parameter	Definition	Units	Value	If values entered,
LL1	Depth of Top of Contamination	cm	304.8	click here to recalculate
LL	Depth of Bottom of Contaminantion	cm	7.62E+02	VF
	Fraction			

VF changed

0.75

Cover

Vegetative

V

Calculated Inhalation Soil Criteria:

Calculat				
Inh _{v,c}	Volatile, Cancer	mg/kg	3.9E+09	above Csat
Inh _{v,n}	Volatile, Noncancer	mg/kg	1.5E+11	above Csat
Inh _{p,c}	Particulate, Cancer	mg/kg	270000	
$lnh_{p,n}$	Particulate, Noncancer	mg/kg	10000000	>1E+06 ppm

dimensionless

Residential Inhalation Soil Remediation Standard:

270000 mg/kg

CONTROLLED BY THE PARTICULATE CARCINOGENIC PATHWAY

Questions?

BREAK

Dr. Swati Toppin, PhD, Rule Manager Bureau of Environmental Evaluation and Risk Assessment swati.toppin@dep.nj.gov

For Migration to Ground Water, begin by checking the contaminant concentration against the SRS-MGW standard, not the Leachate Standard

- Standards for MGW exposure pathway
 Has anything changed?
 - Nothing much has changed in terms of implementing the pathway.
 Previously the pathway was known as Impact to Ground Water Pathway.
 - Previously the pathway still had to be addressed.
 - Instead of standards, there were screening levels (IGWSSLs). If a responsible party did not want to do site specific work, the IGWSSLs were used as site-specific standards.

• This step has been eliminated with the adoption of SRS-MGW.

• Previously, the contaminant in soil was compared to IGWSSL. Now, it must be compared to the SRS-MGW

• In both cases the option of doing real site-specific work to get an Alternative Remediation Standard, or to accept default SSLs as standards (in past) or SRS-MGW is the same.

Two Types of Standards

Migration to Ground Water Soil Remediation Standard

Soil Leachate Remediation Standard

Which MGW Standard Should I Use?

- To determine if MGW pathway could be an issue, compare the contaminant concentrations against SRS-MGW
- There is no compulsion to compare contaminant concentrations against the leachate standards
- Leachate is not an environmental medium and does NOT have to be sampled. It is used for an ARS.
 - Leachate results must be used as before, with SPLP spreadsheets.
 - Do not only compare leachate concentrations with leachate standards.
 - Use spreadsheet!!

Two Key Differences in How MGWSRS and IGWSSLs are Generated

- Both are based on the Soil Water Partition Equation, but the endpoint from which current SRS-MGW is calculated is the GWRS, not the health based GWQC
 - If the health based GWQC is lower than the PQL, the GWQS defaults to the PQL. This results in a higher endpoint, and therefore a higher standard.
- Csat has been expanded so that the pathway is now not applicable to more contaminants than in the previous rule.
 - Previously only di-n-octyl phthalate dropped out due to Csat

Contaminants "Dropped" from MGW Pathway

- Acenaphthene
- Anthracene
- Benzo(a) pyrene
- Benzo (b)fluoranthene
- Benzo(k)fluoranthene
- 1,1-Biphenyl
- 2-Chloronapthalene
- Chrysene
- Dibenz(a,h) anthracene

- Di-n-butyl phthalate
- Di-n-octyl-phthalate
- Endosulfan I & Endosulfan II
- Fluoranthene
- Fluorene
- Indeno (1,2,,-cd)pyrene
- Methoxychlor
- Pyrene

Migration to Ground Water Basis and Background Document

 SRS-MGW are based on the Soil Water Partition Equation, same as used in USEPA Screening Levels

 However, values used in SRS-MGW are consistent with values pertinent to New Jersey rather than USEPA values (based on national values)

Migration to Ground Water Basis and Background

 The Department's value for each parameter is compared to USEPA value, and an explanation offered for any differences

- Sensitivity analyses have been performed for many parameters
 - -This shows where possible modifications of default values is most useful

How Many Old IGWSSLs Have Changed Compared to Current SRS-MGW?

- 18 remain unchanged
- 16 additional contaminants now dropped due to Csat
- An equal number have gone up (39) as have gone down (39)
 Only 5 compounds have gone down by an order of magnitude

These are:

- Bis(2-ethylhexyl)phthalate
- copper
- 4,4'-DDE(p,p'-DDX)
- 4,4'-DDT
- hexachlorocyclopentadiene

Questions?

Indoor Air Remediation Standards for the Vapor Intrusion Exposure Pathway

Erica Snyder, M.S. Bureau of Environmental Evaluation and Risk Assessment erica.snyder@dep.nj.gov

Indoor Air Remediation Standards (IARS) for the Vapor Intrusion Exposure Pathway

- 35 IARS for the residential and nonresidential exposure scenarios
- 2 chemicals added to the list:
 - 1,4-dioxane
 - 1,2,4-trimethylbenzene

Indoor Air Remediation Standards (IARS) for the Vapor Intrusion Exposure Pathway

- 14 chemicals dropped from previous list
 - 3 chemicals not on USEPA's Target Compound List (bromoethene, 1,3-butadiene, 3-chloropropene)
 - 11 chemicals without appropriate toxicological information

What has changed since the proposed rule?

- No changes to proposed IARS
- N.J.A.C. 7:26D Appendix 11 (Table 3) updated to provide additional details on when the use of route-to-route extrapolation is restricted

Comparison of former 2013 Indoor Air Screening Levels and 2021 IARS

Residential IARS			
IARS Increasing	7		
IARS Decreasing	12		
IARS the Same	14		
IARS Added	2		
IARS Removed	14		

Nonresidential IARS	
IARS Increasing	6
IARS Decreasing	9
IARS the Same	18
IARS Added	2
IARS Removed	14

• 1,1-Dichloroethene decreasing by an order of magnitude

Comparison of 2013 Indoor Air Screening Levels to 2021 Indoor Air Remediation Standards

		Residential Indoor Air		Nonresidential Indoor Air	
		Screening Levels	Remediation Standards	Screening Levels	Remediation Standards
		2013	2021	2013	2021
Chemical	CAS No.	μg/m ³	μ <i>g/m</i> ³	μ <i>g/m</i> ³	µg/m ³
Acetone (2-propanone)	67-64-1	32.000	_	140,000	
Benzene	71-43-2	32,000	0.64	2	1.6
Bromodichloromethane	75-27-4	3	0.04	3	-
Bromoethene (vinyl bromide)	593-60-2	2	-	2	-
Bromoform	75-25-2	5	-	11	
Bromomethane (methyl bromide)	74-83-9	5	5.2	22	22
1.3-Butadiene	106-99-0	1	-	1	
2-Butanone (methyl ethyl ketone)	78-93-3	5,200	5,200	22,000	22,000
Carbon disulfide	75-15-0	730	730	3,100	3,100
Carbon tetrachloride	56-23-5	3	1.3	3	2
Chlorobenzene	108-90-7	52	52	220	220
Chloroethane (ethyl chloride)	75-00-3	10,000	10,000	44,000	44,000
Chloroform	67-66-3	2	100	2	430
Chloromethane (methyl chloride)	74-87-3	94	94	390	390
3-Chloropropene (allyl chloride)	107-05-1	2	-	2	
Cyclohexane	110-82-7	6,300	6,300	26,000	26,000
Dibromochloromethane	124-48-1	4	-	4	
1,2-Dibromoethane (ethylene dibromide)	106-93-4	4	1.5	4	1.5
1,2-Dichlorobenzene (o)	95-50-1	210	210	880	880
1,4-Dichlorobenzene (p)	106-46-7	3	830	3	3,500
Dichlorodifluoromethane (Freon 12)	75-71-8	100	-	440	-
1.1-Dichloroethane	75-34-3	2		8	
1.2-Dichloroethane	107-06-2	2	7.3	2	31
1.1-Dichloroethene ¹	75-35-4	210	21	880	88
-,		2.0		000	
1,2-Dichloroethene (trans)	156-60-5	63	-	260	
1,2-Dichloropropane	78-87-5	2	0.92	2	3.3
1,3-Dichloropropene (total)	542-75-6	2	0.91	3	3.1
1,4-Dioxane	123-91-1	-	0.72	-	2.5
Ethylbenzene	100-41-4	2	1.1	5	4.9
Hexachlorobutadiene	87-68-3	5	-	5	-
n-Hexane	110-54-3	730	730	3,100	3,100
Mercury, elemental	7439-97-6	1	1.0	1	1.3
Methylene chloride (dichloromethane)	75-09-2	96	280	1,200	1,200
4-Methyl-2-pentanone (MIBK)	108-10-1	3,100	3,100	13,000	13,000
Methyl tert-butyl ether (MTBE)	1634-04-4	9	11	47	47
Naphthalene	91-20-3	3	2.6	3	2.6
Styrene	100-42-5	1,000	1,000	4,400	4,400
1,1,2,2-Tetrachloroethane	79-34-5	3	-	3	-
Tetrachloroethene (PCE)	127-18-4	9	11	47	47
Toluene	108-88-3	5,200	5,200	22.000	22.000
1.2.4-Trichlorobenzene	120-82-1	4	3.7	9	8.8
1.1.1-Trichloroethane	71-55-6	5,200	5,200	22,000	22,000
1.1.2-Trichloroethane	79-00-5	-,	3,200	,,,,,,	22,000
-,-,-	79-00-5	3	1.1	3	3
Trichloroethene (TCE)	/9=01=0	3	1.1	3	3

Residential IARS				
IARS Increasing	7			
IARS Decreasing	12			
IARS the Same	14			
IARS Added	2			
IARS Removed	14			

Nonresidential IARS				
IARS Increasing	6			
IARS Decreasing	9			
IARS the Same	18			
IARS Added	2			
IARS Removed	14			

Table can be found at:

https://www.nj.gov/dep/srp/
guidance/vaporintrusion/

Basis for the changes to the IARS

- New toxicity information for 4 chemicals
 - 1,2-Dichloropropane; 1,4-dioxane; 1,1,2-Trichloro-1,2,2-trifluoroethane; 1,2,4-trimethylbenzene
 - Inhalation toxicity value hierarchy consistent with SRS for the inhalation exposure pathway, USEPA, and has not changed from former IASLs
- Department's Group C Carcinogen Policy
 - 1,1-Dichloroethene

Basis for the changes to IARS

- Mutagenic Mode of Action Calculations no longer applied
 - Methylene chloride
 - Trichloroethene
 - Vinyl chloride
- Route-to-route extrapolation restricted
 - Inhalation toxicity values for 2 chemicals (TCE and vinyl chloride) were supported with PBPK modeling

Basis for the changes to the IARS

- Exposure duration for residential land use (30 to 26 yrs)
- Lower reporting limits (RL) available for NJDEP-SRP Low Level USEPA TO-15 Air Analytical Method
 - 10 residential IARS and 2 nonresidential IARS based on RL
- 2 significant figures
 - Naphthalene, 1,2,4-trichlorobenzene, vinyl chloride, and ethylbenzene (nonresidential only) decreasing

Benzene

- 2013 Indoor Air Screening Levels: 2 μg/m³
- 2021 Indoor Air Remediation Standards
 - Residential IARS: 0.64 μg/m³
 - Nonresidential IARS: 1.6 μg/m³
- IARS based on the analytical RL
- Use multiple lines of evidence approach to evaluate whether a completed vapor intrusion pathway exists

Background Contamination

- Indoor air sampling last step in the evaluation of the vapor intrusion pathway
- Ambient air sample(s) concurrent with IA samples
- Operational activities
 - Indeterminate VI Pathway status (VIT Section 3.5.2)
- Appendix D: Indoor Air Building Survey and Sampling Form
- Appendix F: Instructions for Occupants for Indoor Air Sampling Events

Additional Information on the IARS for the Vapor Intrusion Exposure Pathway

- Indoor Air Remediation Standards for the Vapor Intrusion Exposure Pathway, Basis and Background
- Vapor Intrusion Exposure Pathway Calculator
 https://www.nj.gov/dep/srp/guidance/rs/index.html

Comparison of 2013 IASL and 2021 IARS Table

https://www.nj.gov/dep/srp/guidance/vaporintrusion/

NJDEP Vapor Intrusion Contacts

- Erica Snyder IARS and Vapor Intrusion Screening Levels
 - Erica.Snyder@dep.nj.gov

- Nicole Kalaigian VI Investigation and Mitigation
 - Nicole.Kalaigian@dep.nj.gov

Thank you!

General Interactions Between Pathways

Dr. Swati Toppin, PhD, Rule Manager Bureau of Environmental Evaluation and Risk Assessment swati.toppin@dep.nj.gov

Relevant Standards

Soil Remediation Pathways

- Ingestion-dermal
- Inhalation
- Migration to ground water

How do I know which pathway is of concern?

All soil pathways need to be considered

If concentration is greater than the relevant standard, the exposure pathway is potentially of concern and must be addressed

Ingestion – Dermal & Inhalation Pathways

Reminder

Change from direct contact standards to separate standards for ingestion-dermal and inhalation standards

- For Ingestion-Dermal and Inhalation pathways check the contaminant concentration against the pathway standard
 - Both pathways had to be addressed previously, but were grouped together under direct contact

Pathway Interactions

There is nothing different from previous rule in terms of interactions

- All pathways where contaminant concentrations exceed the pathway standard need to be addressed for that contaminant
- The driver contaminant may change if an ARS is involved

Pathway Interactions: Example

Cadmium (Cd)

Ingestion-dermal pathway — Residential 71 ppm, Nonresidential 1,100ppm Inhalation pathway - Residential 2,600 ppm, Nonresidential 12,000 ppm Migration to ground water pathway 1.9 ppm

Originally, MGW pathway is the driver

but

If an ARS-MGW leads to Cd ARS-MGW of 1000 ppm, the Ingestion-Dermal pathway is now the driver

Questions?

LUNCH DO NOT SIGN OUT OF THE WEBINAR!

Contact Information

Swati Toppin
Barry Frasco
Allan Motter
Erica Snyder
Nicole Kalaigian

Swati.toppin@dep.nj.gov barry.frasco@dep.nj.gov allan.motter@dep.nj.gov erica.snyder@dep.nj.gov nicole.kalaigian@dep.nj.gov

https://nj.gov/dep/srp/srra/srra_contacts.htm

