## Alternative Remediation Standards Technical Guidance Training

# June 15, 2021

Christina Page, Co-Moderator Training Committee, Chair Lynne Mitchell, Co-Moderator Training Committee, Manager





**Continuing Education Credits (CECs)** 

SRP Licensing Board has approved

#### **5 Technical CECs**

for this Training Class

#### Attendance Requirements:

• Webinar participants: must be logged-in for the entire session and answer 3 out of 4 poll questions (randomly inserted in the presentation)





## **CECs: What's the Process?**

# Since the SRPL Board <u>HAS</u> approved CECs for the course:

- DEP compiles a list of "webinar" participants eligible for CECs and provides the list to the LSRPA
- LSRPA will email eligible participants a "Link" to an LSRPA webpage with certificate access instructions
- Certificates are issued by the LSRPA after paying a *\$25 processing fee*





#### **Test Your Knowledge**

#### Why are you here today?

- A. I don't know
- B. It's too hot outside



C. Alternative Remediation Standards Technical Guidance Training

#### **Test Your Knowledge**

#### Why are you here today?

- A. I don't know
- B. It's too hot outside



**C.** Alternative Remediation Standards Technical Guidance Training

## **Question and Answer Segments**

- Questions will be read aloud by the moderator as time permits
- Any questions are not addressed during the presentation, will be answered via email





#### **Chat Function**

- Please use the chat to advise the Department of technical issues with the presentation
- Please do not use the chat function to comment on presentations or to answer other attendee's questions





#### **Remember!**

#### Please fill out the Course Evaluation here:

https://www.surveymonkey.com/r/NG73ZTP

## Stay logged in all day Login in with only one device







#### Alternative Remediation Standards Technical Guidance

June 15, 2021



NJ Licensed Site Remediation Professionals Association

Thank You to Our Partners



**RUTGERS** 

























# **Upcoming LSRPA Courses & Events**

#### June 24, 2021 – LSRPA Member "Chat" Session

Candace Baker, LSRP and Association Treasurer Kathi Stetser, PG, LSRP, Vice President, GEI Consultants and Vice-Chair of the Regulatory Outreach Committee Bill Hose, LSRPA Assistant Executive Director

#### July 20, 2021 – Member Regulatory Roundtable (1 Reg/.5 Tech CECs) Fill Material Guidance for SRP Sites

Rodger Ferguson, LSRP, PennJersey Env. Consulting

#### > August 5, 2021 – 2021 Standards Rule: Issues and Application

Candace Baker, LSRP, Langan Engineering and Environmental Services, Inc., Michael Gonshor, LSRP, Roux Associates Brandi Gray, LSRP, Langan Engineering and Environmental Services, Inc., Scott Drew, LSRP, Geosyntec Consultants



#### Visit LSRPA.org for details and registration

# **Upcoming LSRPA Courses & Events**

#### **UPCOMING NJDEP TRAINING**

July 14, 2021 – NJDEP/LSRPA Soil and GW Remedial Action Protectiveness/Biennial Certification Forms Training



14

Visit LSRPA.org for details and registration

# Upcoming Event



#### BATTLE AT THE BEACH! CORNHOLE TOURNAMENT

#### • BARBECUE • BAR • NETWORKING •

#### • FIREWORKS •

AUGUST 26, 2021 4PM – 9PM JENKINSON'S NORTH 3 BROADWAY, POINT PLEASANT BEACH, NJ



TICKETS \$120 PER PLAYER (MEMBER TEAM) \$140 PER PLAYER (NON-MEMBER TEAM) \*\*TWO PLAYERS PER TEAM\*\*

#### **SPONSORS**

JENKINSON'S WARD BOARDS YOUR COMPANY NAME COULD BE HERE!

CHARITY CORNHOLE TOURNAMENT PROCEEDS

**REGISTER AT LSRPA.ORG** 

BENEFIT:

LSRPA FOUNDATION Aufting Environmental Remission

SPONSORSHIP OPPORTUNITIES AVAILABLE

# **Upcoming Event**



NJSWEP

PROCEEDS TO BENEFIT THE LSRPA & NJSWEP SCHOLARSHIP FUNDS For more information, please visit Irspa.org or njswep.org

GOLF & GOLF & NETWORKING EVENT



Society of Women Environmental Professionals New Jersey Chapter During this time of the COVID-19 pandemic, we will be following CDC guidelines and NJ Executive Orders at this event, including practicing social distancing and using face coverings when necessary to protect health and safety.



#### **Thank You!**

## Introduction to Alternative Remediation Standards Technical Guidance

Dr. Swati Toppin, PhD, Rule Manager Bureau of Environmental Evaluation and Risk Assessment swati.toppin@dep.nj.gov





## **Statutory Authority for ARS Guidance**

 Authority <u>Brownfield and Contaminated Site</u> <u>Remediation Act</u>, N.J.S.A. 58:10B-12.f(1). Requirement for consideration of site-specific factors

 N.J.A.C.-7:26:D, Subchapter 8 sets forth the procedures for the development and approval of Alternative Remediation Standards





#### **Exposure Pathways**

- Appendix 6- ARS for Ingestion-Dermal Pathway
- Appendix 7- ARS for Inhalation Pathway
- Appendix 8- ARS for the Migration to Ground Water Pathway
- Appendix 9- ARS for the Vapor Intrusion Pathway



## Alternative Remediation Standards for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways



## Introduction and Basis of Default Soil Remediation Standards for the Ingestion-Dermal and Inhalation Exposure Pathways

Chelsea Bray Bureau of Environmental Evaluation and Risk Assessment <u>chelsea.bray@dep.nj.gov</u>





## **Committee Members**

#### NJDEP

- Allan Motter, Co-Chair
- Erica Snyder, Co-Chair
- Linda Cullen, Co-Chair (retired)
- Diane Groth (retired)
- Kathy Kunze (retired)
- Chelsea Bray

#### **Stakeholders**

- Kevin Long
- Lisa Voyce
- Mark Maddaloni
- Marian Olsen



## Agenda

- Introduction Chelsea Bray
- When to develop an ARS Kevin Long
- Developing an ARS Erica Snyder
- ARS requiring pre-approval Lisa Voyce
- ARS for Lead Mark Maddaloni
- ARS that do not require pre-approval Allan Motter
- Submitting an ARS Allan Motter





### **Intended Use of the ARS Guidance Document**

- Comply with requirements set forth by N.J.A.C. 7:26D
- Who uses this?
- Developing an ARS
- Maintain human health-based goals
- Identify when and how to calculate ARS



## **Background for Developing Soil Remediation Standards**

- Residential and nonresidential land use
- Evaluate current and potential future human exposure to contaminated soil
- Cancer risk =  $1 \times 10^{-6}$
- Hazard Quotient = 1
- Default exposure parameters





#### Basis for Default Ingestion-Dermal Soil Remediation Standards

- Incidental ingestion of contaminated soil or dust or contaminant absorption through skin
- Residential for carcinogenic contaminants (child; adult)
- Residential for non-carcinogenic contaminants = child inputs only
- Non-residential outdoor worker (adult only)





### **Basis for Default Inhalation Soil Remediation Standards**

Exposure to volatile organic compounds (VOCs) and particulates in ambient air

| Parameter          | Residential Land<br>Use | Non-Residential<br>Land Use |
|--------------------|-------------------------|-----------------------------|
| Exposure Time      | 24 hours/day            | 8 hours/day                 |
| Exposure Frequency | 350 days/year           | 225 days/year               |
| Exposure Duration  | 26 years                | 25 years                    |
|                    |                         | SDW                         |

#### NJDEP Default Parameters vs USEPA Default Parameters

|                 | Parameter                         | NJDEP Default                              | USEPA Default                              |
|-----------------|-----------------------------------|--------------------------------------------|--------------------------------------------|
| θ <sub>w</sub>  | Water-filled soil porosity        | 0.23 L <sub>water</sub> /L <sub>soil</sub> | 0.15 L <sub>water</sub> /L <sub>soil</sub> |
| n               | Total soil porosity               | $0.41 \ L_{pore}/L_{soil}$                 | $0.43 \ L_{pore}/L_{soil}$                 |
| θ <sub>a</sub>  | Air-filled soil porosity          | 0.18 L <sub>air</sub> /L <sub>soil</sub>   | 0.28 L <sub>air</sub> /L <sub>soil</sub>   |
| f <sub>oc</sub> | Organic carbon content<br>of soil | 0.002 g/g                                  | 0.006 g/g surface                          |



# Thank you!





## Determining When to Develop an Alternative Remediation Standard for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways

Kevin Long, Principal Consultant Terraphase Engineering Inc. kevin.long@terraphase.com





#### When to Develop an ARS for Soil

- 1. The **land use** results in exposure conditions that are not consistent with the assumptions used to derive the default health-based SRS
- 2. Site conditions indicate **physical parameters** that are not consistent with those used to derive the default health-based SRS





 Default health-based SRS based upon reasonable maximum exposures (RME) for residential and nonresidential sites

 Understand RME, what it is, and how it's definition can be an important tool in determining whether to develop an ARS for soil





#### RME is defined as:

"[T]he highest exposure that is reasonably expected to occur at a [...] Site."

– An Examination of EPA Risk Assessment Principles and Practices (USEPA 2004)

"result in an overall exposure estimate that is conservative but within a realistic range of exposure."

– Preamble to the 1994 National Oil and Hazardous Substances Pollution Contingency Plan





| New Jersey                                                                      | New Jersey Department of Environmental Protection<br>Site Remediation and Waste Management Program<br>RECEPTOR EVALUATION (RE) FORM                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Department of Environmental Protection                                          | SECTION A. SITE Site Name: Program Interest (PI) Number(s):                                                                                                                                                                                                                                                                                               |
| Site Remediation and<br>Waste Management Program                                | Communication Center Number(s) and/or ISRA number(s) for this submission: (as many as will fit in the space provided) This form must be attached to the Cover/Certification Form                                                                                                                                                                          |
|                                                                                 | if not submitted through a Remedial Phase Online Service Indicate the type of submission: Initial RE Submission Updated RE Submission Indicate the reason for submission of an updated RE form Indicate the reason for submission of an updated RE form Submission of an Immediate Environmental Concern (IEC) source control report;                     |
| Technical Guidance for Preparation and Submission<br>of a Conceptual Site Model | <ul> <li>Submission of a Remedial Investigation Report;</li> <li>Submission of a Remedial Action Report;</li> <li>Check if included in updated RE</li> <li>The known concentration or extent of contamination in any medium has increased;</li> <li>A new AOC has been identified;</li> <li>A new receptor is identified;</li> </ul>                      |
| August 2019<br>Version 1.1                                                      | A new exposure pathway has been identified.      SECTION B. ON SITE AND SURROUNDING PROPERTY USE      Identify any sensitive populations/uses that are currently on-site or surrounding property usage within 200 feet     of the site property bundary (check all that apply):         On-site Off-site         None of the following                    |
|                                                                                 | Public or Private Schools Grades K-12                                                                                                                                                                                                                                                                                                                     |
|                                                                                 | Current site uses ( <i>check all that apply</i> ):     Industrial     Commercial     School or child care     Government     Park or recreational use     Vacant     Agricultural     Other:     S. Planned future on-site uses and off-site uses within 200 feet of the site boundary ( <i>check all that apply</i> ):                                   |
|                                                                                 | On-Site Off-Site       On-Site Off-Site       On-Site Off-Site       On-Site Off-Site         Industrial       Residential       Commercial         School or child care       Government       Park or recreational use         Vacant       Agricultural       Other:         Provide a map depicting the location of the proposed changes in land use. |
|                                                                                 | Receptor Evaluation Form Page 1 of 6<br>Version 2.4 12/03/18                                                                                                                                                                                                                                                                                              |

35



# **Current** and **future** land use(s) that would result in RME that are less than assumed by the default SRS



Active Recreation

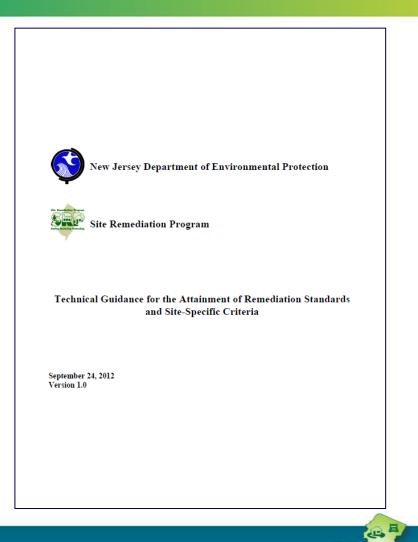
Passive Recreation

Restricted Access

Infrequent Access





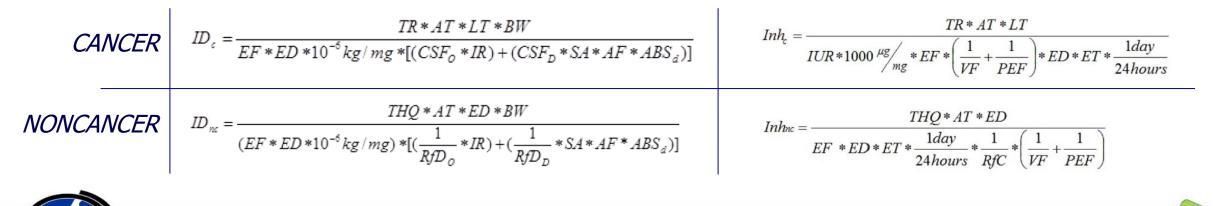

### **Accounting for Site-Specific Physical Parameters**

The Rule allows for modification of certain physical parameters used to calculate the default health-based **inhalation** pathway SRS:





- May require institutional and engineering controls
- May require **prior approval** from the Department
- May need to account for assumptions used to derive ARS for soil when evaluating the significance of concentrations



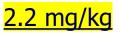



- Consider **both** the ingestion-dermal and inhalation exposure pathways
- Remember that the **lower** of the health-based calculations will drive remedial action decision-making

Ingestion-Dermal

#### Inhalation




- Consider **both** the ingestion-dermal and inhalation exposure pathways
- Remember that the **lower** of the health-based calculations will drive remedial action decision-making

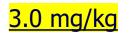
Ingestion-Dermal

Benzene

3.0 mg/kg

Inhalation








- Consider **both** the ingestion-dermal and inhalation exposure pathways
- Remember that the **lower** of the health-based calculations will drive remedial action decision-making

Ingestion-Dermal

Benzene



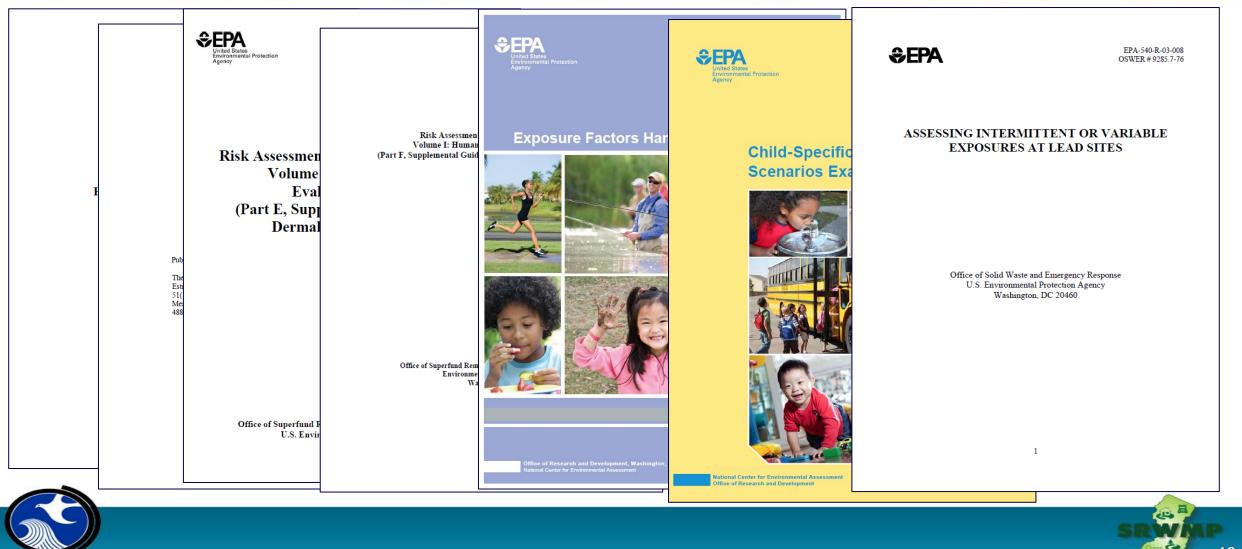






### Consider the impact of other receptor exposure scenarios




Migration to Groundwater

Ecological Exposure/Risk

Vapor Intrusion







### **Thank You!**





# Development of Alternative Remediation Standards for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways

Erica Snyder, MS Bureau of Environmental Evaluation and Risk Assessment erica.Snyder@dep.nj.gov





### Development of Alternative Remediation Standards (ARS) for Soil

The Brownfield and Contaminated Site Remediation Act (N.J.S.A. 58:10B-12.f(1)) requires the Department to consider **site-specific** factors in determining an ARS



### **ARS for Soil – Options**

- ARS for soil options for the ingestion-dermal and inhalation exposure pathways specified in:
  - N.J.A.C. 7:26D Appendices 6 and 7
  - Alternative Remediation Standards Technical Guidance for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways





# **Ingestion-Dermal ARS for Soil – Options**

- Option #1: Site-specific alternative land use exposure scenario (all contaminants)
- Option #2: Site-specific lead ARS for soil
  - Alternative land use exposure scenario
  - Bioavailability/bioaccessibility of lead in site soils
  - Use of other scientific models or methods

(More details on lead to come from Mark!)





### **Inhalation ARS for Soil - Options**

- Option #1: Site-specific alternative land use exposure scenario (all contaminants)
- Option #2: Modification of site-specific physical parameters (all contaminants)
  - Depth range of contamination
  - Soil organic carbon content ( $f_{oc}$ )
  - Fraction of vegetative cover (V)

#### (More to come on Option #2 from Allan!)



# **ARS for Soil Requests Requiring Prior Approval by the Department**

- All ingestion-dermal ARS for soil require preapproval from the Department prior to use (N.J.A.C. 7:26D Appendix 6, Section III)
- Inhalation ARS for soil based on alternative land use require pre-approval from the Department prior to use (N.J.A.C. 7:26D Appendix 7, Section III(a))
- Inhalation ARS for soil based on site-specific physical parameters do not require pre-approval (N.J.A.C. 7:26D Appendix 7, Section III(b))





### Alternative Land Use – Institutional and Engineering Controls

- Institutional control and Remedial Action Permit required
- Engineering control may also be required





### **Test Your Knowledge**

### **True or False:**

Institutional controls and a Remedial Action Permit are required for Inhalation ARS based on alternative land use.

A. True

B. False

### **Test Your Knowledge**

### **True or False:**

Institutional controls and a Remedial Action Permit are required for Inhalation ARS based on alternative land use.

### A. True

### B. False

#### Ingestion-Dermal Exposure Factors That Can Be Changed\*

#### Inhalation Exposure Factors That Can Be Changed

- Exposure Frequency (days/year)
- Exposure Duration (years)

- Exposure Time (hours/day)
- Exposure Frequency (days/year)
- Exposure Duration (years)

\*Exposure Time not applicable because exposure is evaluated as an "event" (1 event per day)



- Ingestion-Dermal Exposure Factors That Cannot Be Changed
  - Soil Ingestion Rate (mg/day)
  - Body Weight (kg)
  - Skin Surface Area (cm<sup>2</sup>/day)
  - Adherence Factor (mg/cm<sup>2</sup>)
  - Dermal Absorption Fraction (unitless)





- Inhalation Exposure Factors That Cannot Be Changed (Meteorological)
  - Dispersion Factor, Q/C (g/m<sup>2</sup>-s)/(kg/m<sup>3</sup>)
  - Source Area Size (m<sup>2</sup>)
  - Mean Annual Wind Speed (m/s)
  - Anemometer Height (unitless)
  - Averaging Time





- Inhalation Exposure Factors That Cannot Be Changed (Soil Parameters)
  - Air-filled Soil Porosity (L/L)
  - Water-filled Soil Porosity (L/L)
  - Total Porosity (L/L)
  - Soil Bulk Density (g/cm<sup>3</sup>)
  - Exposure Interval (sec)





- Inhalation Exposure Factors That Cannot Be Changed (Chemical Properties)
  - Soil Organic Carbon-water
  - Partition Coefficient (cm<sup>3</sup>/g)
  - Diffusivity in Air (cm<sup>2</sup>/sec)
  - Diffusivity in Water (cm<sup>2</sup>/sec)
  - Henry's Law Constant (unitless)





### **Chemical-Specific Toxicity**

- Cancer and noncancer toxicity values cannot be changed via the ARS process
  - For contaminants with no existing SRS, interim SRS may be developed in accordance with 7:26D-6
  - Toxicity values for contaminants with an existing SRS may be updated in accordance with 7:26D-7



### **Calculation of ARS for Soil**

- Calculators accessible on the Remediation Standards website <u>NJDEP SRP - Guidance: Remediation Standards</u> (state.nj.us)
  - Site-specific parameters that may be adjusted are unlocked
  - Input parameters which may not be adjusted are locked
  - Calculator does not include lead



#### Calculators

The Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator

Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator (Version 1.0 May 2021)

This includes the following calculators:

- Soil-Water Partition Equation Calculator
- Synthetic Precipitation Leaching Procedure Calculator
- Dilution-Attenuation Factor Calculator
- Fraction Organic Carbon Calculator
- Soil Ingestion-Dermal Exposure Pathway Calculator
  - Soil Ingestion-Dermal Exposure Pathway Calculator (Version 1.0 May 2021)

Soil Inhalation Exposure Pathway Calculator

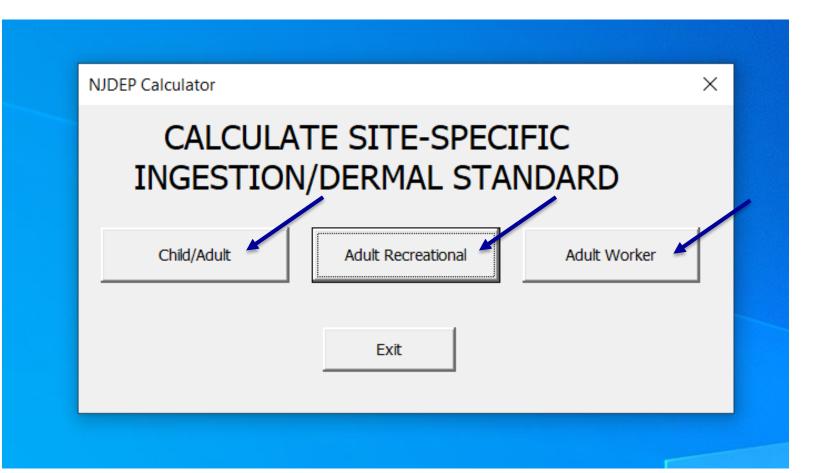
Soil Inhalation Exposure Pathway Calculator (Version 1.0 May 2021)

Vapor Intrusion Exposure Pathway Calculator

Vapor Intrusion Exposure Pathway Calculator (Version 1.0 May 2021)



The Extractable Petroleum Hydrocarbon Ingestion-Dermal Exposure Pathway Calculator:


Extractable Petroleum Hydrocarbon Ingestion-Dermal Exposure Pathway Calculator (Version 1.0 May 2021)

This includes the following calculators:

- Category 2 Sample-Specific Residential
- Category 2 Sample-Specific Non-Residential
- Category 1 and 2 Alternative Remediation Standards for Soil (based on Land Use Exposure Scenarios)



### ARS for Soil Calculator for the Ingestion-Dermal Exposure Pathway





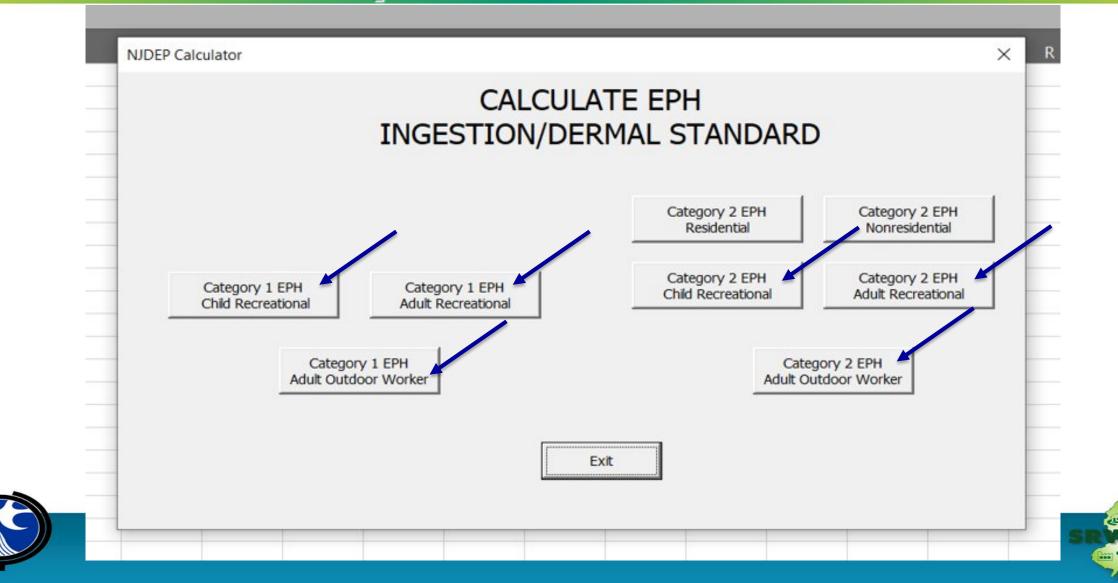


| C                                    | ontaminant: Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | •                                                                                                                                             | ·                                                                                             | CAS No.: 71-43-2<br>Evaluated by:  |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|--|--|--|
|                                      | TR * AT * LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                                                               |                                                                                               | HO * AT * ED * BW                  |  |  |  |
| $D_c = \frac{10^{-6} k}{10^{-6} k}$  | $(CSF_{o} * IFS_{adj}) + (CSF_{o} * DFS_{adj}) + (CSF$ | $[BS_d)]$                                              | $ID_{\omega} = \frac{IIQ^{-M} + ID + DW}{(EF * ED * 10^{-6} kg / mg) * [(\frac{1}{R/D_{0}} * IR) + (\frac{1}{R/D_{0}} * SA * AF * ABS_{d})]}$ |                                                                                               |                                    |  |  |  |
| IEC -                                | $EF_c * ED_c * IR_c + EF_a * ED_a *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IR <sub>a</sub>                                        | $EF_*ED_*SA_*AF_*EF_*ED_*SA_*AF_*EF_*ED_*SA_*AF_*EF_*EF_*EF_*EF_*EF_*EF_*EF_*EF_*EF_*E$                                                       |                                                                                               |                                    |  |  |  |
| IFS <sub>adj</sub> =                 | $=\frac{EF_c * ED_c * IR_c}{BW_c} + \frac{EF_a * ED_a *}{BW_a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | $DFS_{adj} = -$                                                                                                                               | $DFS_{adj} = \frac{EF_c * ED_c * SA_c * AF_c}{BW_c} + \frac{EF_a * ED_a * SA_a * AF_a}{BW_a}$ |                                    |  |  |  |
| Parameter                            | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units                                                  | Residential<br>Scenario                                                                                                                       | Alternative<br>Scenario                                                                       | Soil Reporting Limit (mg/kg) = 0.0 |  |  |  |
| TR                                   | Target Cancer Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unitless                                               | 1.00E-06                                                                                                                                      | 1.00E-06                                                                                      |                                    |  |  |  |
| THQ                                  | Target Hazard Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | unitless                                               | 1                                                                                                                                             | 1                                                                                             |                                    |  |  |  |
| AT                                   | Averaging Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | days/year                                              | 365                                                                                                                                           | 365                                                                                           |                                    |  |  |  |
| LT<br>EF,                            | Lifetime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | years                                                  | 70                                                                                                                                            | 70                                                                                            |                                    |  |  |  |
|                                      | Exposure Frequency - child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | days/year                                              | 350                                                                                                                                           | 260                                                                                           | changed                            |  |  |  |
| EF.                                  | Exposure Prequency - adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | days/year                                              | 350                                                                                                                                           | 260                                                                                           | changed                            |  |  |  |
| ED <sub>e</sub>                      | Exposure Duration - child<br>Exposure Duration - adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | years                                                  | 6<br>20                                                                                                                                       | 6<br>20                                                                                       | 1                                  |  |  |  |
|                                      | Oral Cancer Slope Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | years                                                  | 0.23                                                                                                                                          | 0.23                                                                                          |                                    |  |  |  |
| CSF <sub>0</sub><br>CSF <sub>0</sub> | Dermal Cancer Slope Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mg/kg-day) <sup>-1</sup><br>(mg/kg-day) <sup>-1</sup> | 0.23                                                                                                                                          | 0.23                                                                                          |                                    |  |  |  |
| RfDo                                 | Oral Reference Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg-day                                              | 0.004                                                                                                                                         | 0.004                                                                                         |                                    |  |  |  |
| RfDp                                 | Dermal Reference Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg-day                                              | 0.004                                                                                                                                         | 0.004                                                                                         |                                    |  |  |  |
| IFS <sub>adj</sub>                   | Age-Adjusted Soil Ingestion Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                                  | 36750                                                                                                                                         | 27300                                                                                         |                                    |  |  |  |
| DFS <sub>adj</sub>                   | Age-Adjusted Soil Dermal Contact Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                  | 103390                                                                                                                                        | 76804                                                                                         |                                    |  |  |  |
| ABS <sub>d</sub>                     | Dermal Absorption Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unitless                                               | NA                                                                                                                                            | NA                                                                                            |                                    |  |  |  |
| BW <sub>c</sub>                      | Body Weight - child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kg                                                     | 15                                                                                                                                            | 15                                                                                            |                                    |  |  |  |
| BWa                                  | Body Weight - adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kg                                                     | 80                                                                                                                                            | 80                                                                                            |                                    |  |  |  |
| IR <sub>e</sub>                      | Soil Ingestion Rate - child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/day                                                 | 200                                                                                                                                           | 200                                                                                           |                                    |  |  |  |
| IR <sub>a</sub>                      | Soil Ingestion Rate - adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/day                                                 | 100                                                                                                                                           | 100                                                                                           |                                    |  |  |  |
| SAc                                  | Skin Surface Area - child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cm²/day                                                | 2373                                                                                                                                          | 2373                                                                                          |                                    |  |  |  |
| SAa                                  | Skin Surface Area - adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cm²/day                                                | 6032                                                                                                                                          | 6032                                                                                          |                                    |  |  |  |
| AF <sub>e</sub>                      | Soil Adherence Factor - child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/cm <sup>2</sup>                                     | 0.2                                                                                                                                           | 0.2                                                                                           |                                    |  |  |  |
| AFa                                  | Soil Adherence Factor - adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/cm <sup>2</sup>                                     | 0.07                                                                                                                                          | 0.07                                                                                          |                                    |  |  |  |
| ID <sub>c</sub>                      | Carcinogenic Health-Based Soil Criterion<br>(ingestion only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                                  | 3                                                                                                                                             | 4.1                                                                                           |                                    |  |  |  |
| ID <sub>e</sub>                      | Carcinogenic Health-Based Soil Criterion<br>(ingestion/dermal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                  | NA                                                                                                                                            | NA                                                                                            |                                    |  |  |  |
| ID <sub>nc</sub>                     | CHILD Non-carcinogenic Health-Based Soil<br>Criterion (ingestion only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                  | 310                                                                                                                                           | 420                                                                                           |                                    |  |  |  |
| ID <sub>nc</sub>                     | CHILD Non-carcinogenic Health-Based Soil<br>Criterion (ingestion/dermal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                  | NA                                                                                                                                            | NA                                                                                            |                                    |  |  |  |
| ID <sub>nc</sub>                     | ADULT Non-carcinogenic Health-Based Soil<br>Criterion (ingestion only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                  | 3300                                                                                                                                          | 4500                                                                                          |                                    |  |  |  |
| ID <sub>nc</sub>                     | ADULT Non-carcinogenic Health-Based Soil<br>Criterion (ingestion/dermal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                  | NA                                                                                                                                            | NA                                                                                            | ľ                                  |  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                               |                                                                                               |                                    |  |  |  |

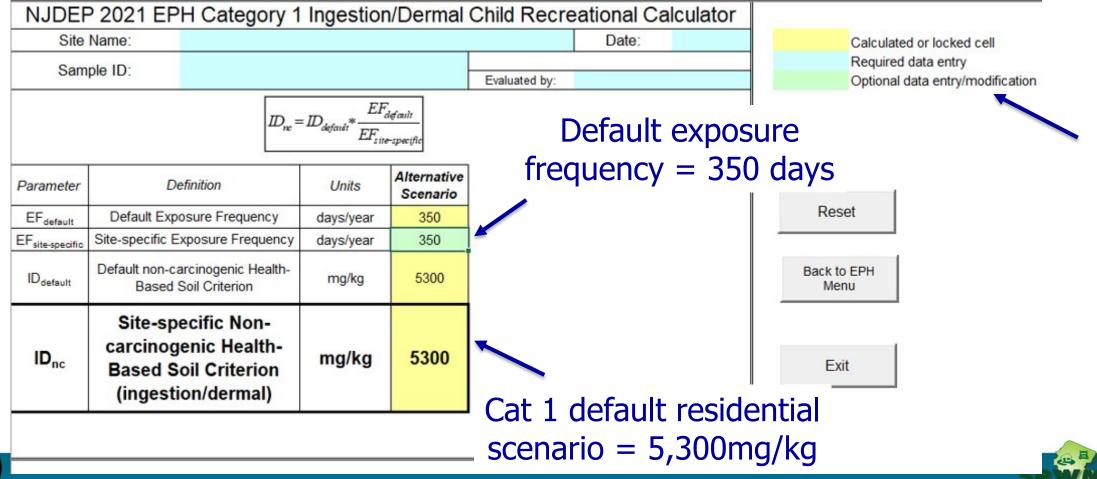
Default exposure frequency = 350 days ARS exposure frequency = 260 days





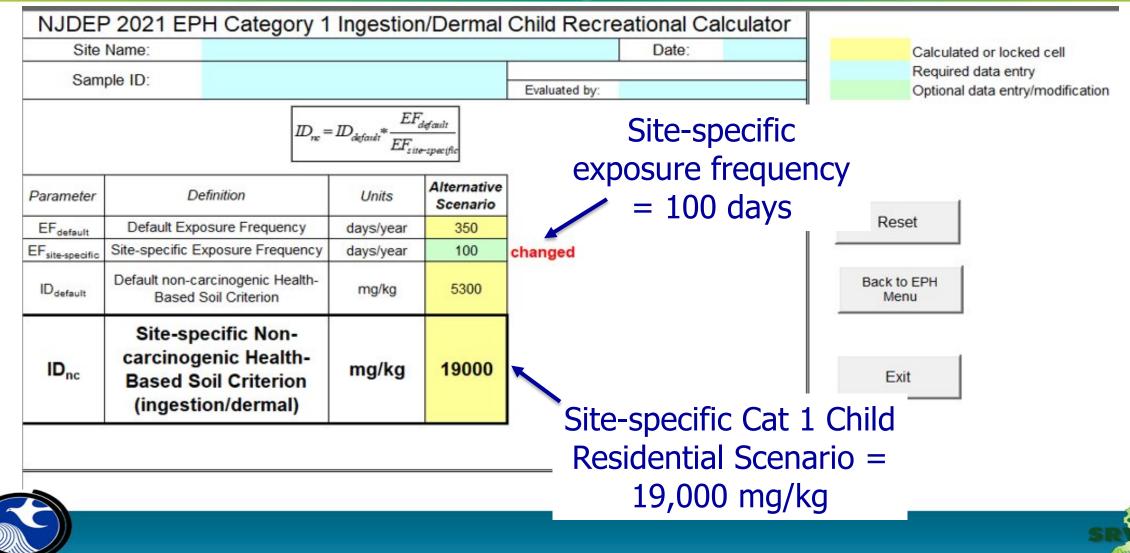

| Sit                  | e Name:                                      |                            |                           |                            |                         |                                          | Date:                              |      |  |
|----------------------|----------------------------------------------|----------------------------|---------------------------|----------------------------|-------------------------|------------------------------------------|------------------------------------|------|--|
| Contaminant: Benzene |                                              |                            |                           | -                          |                         | CAS No.:<br>Evaluated by:                | 71-43                              | -2   |  |
|                      |                                              |                            |                           | ID <sub>nc</sub> =         | Т                       | HQ * AT * ED * BW                        |                                    | 7    |  |
| D. =                 | TR * A1                                      | al( 1 * IB) + ( 1          | * 5 4 4 5 * 405           | <u>_</u>                   |                         |                                          |                                    |      |  |
| EF * E               | $ED * 10^{-6} kg / mg * [(CSF)]$             | $_{o} * IR) + (CSF_{D} *)$ | $SA * AF * ABS_d$         | )]                         | ED~10 kg/mg)            | $*[(\frac{1}{RfD_o}*IR)+(\frac{1}{RfL}$  | $\overline{D_D}^* SA * AF + ABS_d$ | 71   |  |
| Parameter            | Definition                                   |                            | Units                     | Nonresidential<br>Scenario | Alternative<br>Scenario | Soil Reporting Limit (mg/kg) = 0.005     |                                    |      |  |
| TR                   | Target Cancer Risk                           |                            | unitless                  | 1.00E-06                   | 1.00E-06                |                                          |                                    |      |  |
| THQ                  | Target Hazard Quotient                       |                            | unitless                  | 1                          | 1                       |                                          |                                    |      |  |
| AT                   | Averaging                                    |                            | days/year                 | 365                        | 365                     |                                          |                                    |      |  |
| LT                   | Lifetime                                     | -                          | years                     | 70                         | 70                      |                                          |                                    |      |  |
| EF                   | Exposure Fre                                 |                            | days/year                 | 225                        | 104 🥌                   | changed                                  |                                    |      |  |
| ED                   | Exposure Du                                  |                            | years                     | 25                         | 25                      |                                          |                                    |      |  |
| CSFo                 | Oral Cancer Slo                              | pe Factor                  | (mg/kg-day) <sup>-1</sup> | 0.23                       | 0.23                    |                                          |                                    |      |  |
| CSFD                 | Dermal Cancer S                              | lope Factor                | (mg/kg-day) <sup>-1</sup> | 0.23                       | 0.23                    | Default exposure<br>frequency = 225 days |                                    |      |  |
| RfD <sub>o</sub>     | Oral Reference                               | e Dose                     | mg/kg-day                 | 0.004                      | 0.004                   |                                          |                                    |      |  |
| RfD <sub>D</sub>     | Dermal Referer                               | nce Dose                   | mg/kg-day                 | 0.004                      | 0.004                   | ARS exposure                             |                                    |      |  |
| ABS <sub>d</sub>     | Dermal Absorption                            | on Fraction                | unitless                  | NA                         | NA                      | frequency = 104 day                      |                                    | davs |  |
| BW                   | Body Weight - adult                          |                            | kg                        | 80                         | 80                      |                                          |                                    | aayo |  |
| IR                   | Soil Ingestion                               |                            | mg/day                    | 100                        | 100                     |                                          |                                    |      |  |
| SA                   | Skin Surface Ar                              |                            | cm²/day                   | 3527                       | 3527                    |                                          |                                    |      |  |
| AF                   | Soil Adherence                               |                            | mg/cm <sup>2</sup>        | 0.12                       | 0.12                    |                                          |                                    |      |  |
| ID <sub>c</sub>      | Carcinogenic Health-Bas<br>(ingestion of     | only)                      | mg/kg                     | 16                         | 34                      |                                          |                                    |      |  |
| ID <sub>c</sub>      | Carcinogenic Health-Bas<br>(ingestion/de     | ermal)                     | mg/kg                     | NA                         | NA                      |                                          |                                    |      |  |
| ID <sub>nc</sub>     | Non-carcinogenic Hea<br>Criterion (ingest    |                            | mg/kg                     | 5200                       | 11000                   |                                          |                                    |      |  |
| ID <sub>nc</sub>     | Non-carcinogenic Hea<br>Criterion (ingestion |                            | mg/kg                     | NA                         | NA                      |                                          |                                    |      |  |
|                      |                                              |                            |                           |                            |                         |                                          |                                    |      |  |
| It are at la         | ve Adult Ingestion                           |                            |                           |                            |                         |                                          |                                    |      |  |

2 H

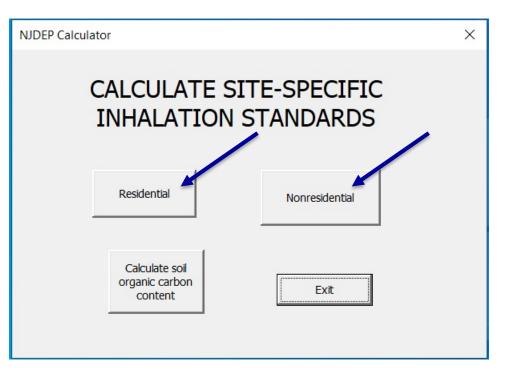

A.



### ARS for EPH Ingestion-Dermal Exposure Calculator




### Category 1 EPH Child Recreational Exposure Scenario






### Category 1 EPH Child Recreational Exposure Scenario



# ARS for Soil Calculator for the Inhalation Exposure Pathway (pre-approval required)







|           | NJDEP 20                                                 | 21 Inhalat            | ion Soil    | Remediati | ion Star  | ndard Calo                                         | ulator: Re             | sidentia               | al                                 |
|-----------|----------------------------------------------------------|-----------------------|-------------|-----------|-----------|----------------------------------------------------|------------------------|------------------------|------------------------------------|
| Site      | Name:                                                    | Generic Con           | taminated S | Site      |           |                                                    | Date:                  | 6/3                    | 9/2021                             |
| Cont      | aminant: 🚺                                               | laphthalene           |             |           |           | -                                                  | CAS No.:               |                        | -20-3                              |
| Contami   | in ant Daram                                             | atom.                 |             |           | Coil Dor  |                                                    | Evaluated by:          | L                      | SRP                                |
| Parameter | inant Param<br>Definition                                | leters:<br>Linits     | Value       |           | Parameter | ameters:<br>Definition                             | Linits                 | Value                  | 1                                  |
|           | Inhalation Unit                                          |                       |             | l I       |           | Water-filled                                       | dimensionless          |                        |                                    |
| IUR       | Risk Factor                                              | (µg/m³) <sup>-1</sup> | 3.40E-05    |           | θ.        | Soil Porosity                                      | (v/v)                  | 0.23                   |                                    |
| RfC       | Inhalation<br>Reference<br>Concentratio                  | mg/m³                 | 3.00E-03    |           | θ,        | Air-filled Soil<br>Porosity                        | dimensionless<br>(v/v) | 0.18                   |                                    |
| D;        | Diffusivity in<br>Air                                    | cm²łs I               | 6.05E-02    |           | f <b></b> | (Fraction)<br>Organic Carbon<br>Content of Soil    | dimensionless<br>(w/w) | 0.002                  |                                    |
| D,        | Diffusivity in<br>Water                                  | cm2łs                 | 8.38E-06    |           | p.        | Dry Soil Bulk<br>Density                           | g/cm³                  | 1.5                    |                                    |
| De        | Apparent<br>Diffusivity                                  | cm2/s                 | 4.46E-06    |           | n         | Total Soil<br>Porosity                             | dimensionless<br>(v/v) | 0.41                   |                                    |
| к         | Soil Organic<br>Carbon-Water<br>Partition<br>Coefficient | cm³/g                 | 1.54E+03    |           | Emission  | n/Dispersion                                       | Parameter              | 's:                    |                                    |
| K.        | Soil-Water<br>Partition<br>Coefficient                   | cm <sup>9</sup> /g    | 3.09E+00    |           | Parameter | Definition                                         | Units                  | Value                  |                                    |
| H.        | Henry's Law<br>Constant                                  | dimensionless         | 1.80E-02    |           | QIC       | Inverse<br>Concentration<br>at Center of<br>Source | (g/m²-s)/<br>(kg/m³)   | 86.6                   |                                    |
| BL        | Soil Reporting<br>Limit                                  | mg/kg                 | 0.17        |           | VF        | Soil-to-Air<br>Volatilization<br>Factor            | m³/kg                  | 6.94E+04               |                                    |
| S         | Water<br>Solubility                                      | mg/L                  | 3.10E+01    |           | TAVE      | Time-averaged<br>volatilization<br>flux            | mg/cm²/day             | Optional<br>Calculated |                                    |
| C.,,      | Soil<br>Saturation<br>Limit                              | mg/kg                 | 1.00E+02    |           | BEF       | Particulate<br>Emission<br>Factor                  | m³/kg                  | 1.67E+09               |                                    |
| Exposure  | Parameter                                                | s:                    |             |           |           |                                                    |                        | 2 - C - C - C          |                                    |
| Parameter | Definition                                               | Linits                | Value       |           | Scenari   | o Paramete                                         |                        |                        |                                    |
| EF        | Exposure<br>Frequency                                    | days/year             | 350         |           | Pr smeter | Definition                                         | Linits                 | Value                  | If values<br>entered,              |
| ED        | Exposure<br>Duration                                     | years                 | 26          |           | LL1       | Deptn or iop<br>of<br>Deptnariantian               | cm                     | Optional               | click here to<br>recalculate<br>VF |
| ET        | Exposure Time                                            | hr/day                | 24          |           | LL        | of<br>Cashania antian                              | cm                     | Optional               |                                    |
| LT        | Lifetime                                                 | years                 | 70          |           | v         | Fraction<br>Vegetative<br>Cover                    | dimensionless          | 0.5                    |                                    |
| т         | Exposure<br>Interval                                     | seconds               | 8.20E+08    |           | Calculat  | ted Inhalati                                       | on Soil Crit           | eria:                  |                                    |
| AT        | Averaging Time                                           | days/year             | 365         |           | inh.,.    | Volatile, Cancer                                   | mg/kg                  | 5.7                    |                                    |
| THQ       | Target Hazard<br>Quotient                                | dimensionless         | 1           |           | Inh.,.    | Volatile,<br>Noncancer                             | mg/kg                  | 220                    | above Csat                         |
| TR        | Target Cancer<br>Bisk                                    | dimensionless         | 1.00E-06    |           | inh,      | Particulate,<br>Cancer<br>Particulate              | mg/kg                  | 140000                 |                                    |
|           | Inh Particulate, mg/kg 5E+06                             |                       |             |           |           |                                                    |                        |                        |                                    |
| Resider   | ntial Inhala<br>5.7                                      | ation Soil<br>mg/kg   | Remedia     | tion Stan | dard:     |                                                    |                        |                        |                                    |
| C         | ONTROL                                                   |                       | THE VOI     | ATILE C   | ARCIN     | OGENIC                                             | PATHWA                 | Y                      |                                    |

Default exposure frequency = 350 days

Default exposure duration = 26 years

Default exposure time = 24 hours



|                                      | NJDEP 20                                                 | 21 Inhalat            | ion Soil | Remediat  | ion Star  | ndard Calo                                         | ulator: Re              | esidenti               | al                            |  |
|--------------------------------------|----------------------------------------------------------|-----------------------|----------|-----------|-----------|----------------------------------------------------|-------------------------|------------------------|-------------------------------|--|
| Site Name: Generic Contaminated Site |                                                          |                       |          |           |           |                                                    |                         | 6/3                    | 6/9/2021                      |  |
| Contaminant: Naphthalene             |                                                          |                       |          |           |           |                                                    |                         | CAS No.: 91-20-3       |                               |  |
|                                      |                                                          |                       |          |           |           |                                                    | Evaluated by:           | 1                      | LSRP                          |  |
| _                                    | nant Param                                               |                       |          |           |           | ameters:                                           |                         |                        |                               |  |
| Parameter                            | Definition                                               | Linits                | Value    |           | Parameter | Definition<br>Water-filled                         | Linits<br>dimensionless | Value                  |                               |  |
| IUR                                  | Inhalation Unit<br>Risk Factor                           | (µg/m³) <sup>,1</sup> | 3.40E-05 |           | θ.        | Soil Porosity                                      | dimensioniess<br>(v/v)  | 0.23                   |                               |  |
| RfC                                  | Inhalation<br>Reference<br>Concentratio                  | mg/m³                 | 3.00E-03 |           | θ,        | Air-filled Soil<br>Porosity                        | dimensionless<br>(v/v)  | 0.18                   |                               |  |
| D;                                   | Diffusivity in<br>Air                                    | cm²/s                 | 6.05E-02 |           | f.,       | (Fraction)<br>Organic Carbon<br>Content of Soil    | dimensionless<br>(w/w)  | 0.002                  |                               |  |
| D,                                   | Diffusivity in<br>Water                                  | cm2/s                 | 8.38E-06 |           | p.        | Dry Soil Bulk<br>Density                           | g/cm³                   | 1.5                    |                               |  |
| De                                   | Apparent<br>Diffusivity                                  | cm2/s                 | 4.46E-06 |           | n         | Total Soil<br>Porosity                             | dimensionless<br>(v/v)  | 0.41                   |                               |  |
| к                                    | Soil Organic<br>Carbon-Water<br>Partition<br>Coefficient | cm³/g                 | 1.54E+03 |           | Emission  | n/Dispersion                                       | n Parameter             | rs:                    |                               |  |
| к,                                   | Soil-Water<br>Partition<br>Coefficient                   | cm³/g                 | 3.09E+00 |           | Parameter | Definition                                         | Units                   | Value                  |                               |  |
| H,                                   | Henry's Law<br>Constant                                  | dimensionless         | 1.80E-02 |           | Q/C       | Inverse<br>Concentration<br>at Center of<br>Source | (g/m²-s)/<br>(kg/m³)    | 86.6                   |                               |  |
| RL                                   | Soil Reporting<br>Limit                                  | mg/kg                 | 0.17     |           | VF        | Soil-to-Air<br>Volatilization<br>Factor            | m³/kg                   | 6.94E+04               |                               |  |
| S                                    | Water<br>Solubility                                      | mg/L                  | 3.10E+01 |           | TAVF      | Time-averaged<br>volatilization<br>flux            | mg/cm²/day              | Optional<br>Calculated |                               |  |
| С.,,                                 | Soil<br>Saturation<br>Limit                              | mg/kg                 | 1.00E+02 |           | PEF       | Particulate<br>Emission<br>Factor                  | m³/kg                   | 1.67E+09               |                               |  |
| Exposure                             | Parameter                                                | s:                    |          |           |           |                                                    |                         |                        |                               |  |
| Parameter                            | Definition                                               | Linits                | Value    |           | Scenari   | o Paramete                                         | Si                      |                        |                               |  |
| EF                                   | Exposure<br>Frequency                                    | days/year             | 200      | chinged   | arameter  | Definition                                         | Linits                  | Value                  | If values<br>entered.         |  |
| ED                                   | Exposure<br>Duration                                     | years                 | 20       | char ged  | LL1       | Depth of Top<br>of                                 | cm                      | Optional               | click here t<br>recalculation |  |
| ET                                   | Exposure Time                                            | hr/day                | 3        | Shanged   | LL        | of                                                 | cm                      | Optional               | VF                            |  |
| LT                                   | Lifetime                                                 | years                 | 70       |           | ۷         | Fraction<br>Vegetative<br>Cover                    | dimensionless           | 0.5                    |                               |  |
| т                                    | Exposure<br>Interval                                     | seconds               | 8.20E+08 |           | Calculat  | ted Inhalati                                       | on Soil Crit            | eria:                  |                               |  |
| AT                                   | Averaging Time                                           | days/year             | 365      |           | inh.,.    | Volatile, Cancer                                   | mg/kg                   | 100                    |                               |  |
| THQ                                  | Target Hazard<br>Quotient                                | dimensionless         | 1        |           | inh.,.    | Volatile,<br>Noncancer                             | mg/kg                   | 3000                   | above Csa                     |  |
| TR                                   | Target Cancer<br>Bisk                                    | dimensionless         | 1.00E-06 |           | inh,      | Particulate,<br>Cancer                             | mgikg                   | 3E+06                  | >1E+06 ppt                    |  |
|                                      |                                                          |                       |          | 1.0       | inh,      | Particulate,<br>Noncancer                          | mgikg                   | 7E+07                  | » <sup>у</sup> 406 ррл        |  |
| Resider                              | ntial Inhala<br>100                                      | ation Soil<br>ma/ka   | Remedia  | tion Stan | dard:     |                                                    |                         |                        |                               |  |

#### ARS exposure frequency = 200 days

ARS exposure duration = 20 years

> ARS exposure time = 3 hours

> > 70



100 mg/kg CONTROLLED BY THE VOLATILE CARCINOGENIC PATHWAY

### **Technical Consultation**

- Technical Consultation with the Department is required before submittal of an ARS application for lead
- Technical Consultation with the Department is available upon request for any other contaminant





# **Questions?**





## ARS for Soil Requiring Pre-approval Alternative Land Uses

Lisa K. Voyce M.S. Hazardous Waste Engineering/Toxicology Senior Human Health and Ecological Risk Assessor lisa3737@optimum.net







*ARS for soil options that require prior approval by the Department before being implemented, including guidance and examples of exposure factors for deriving an ARS for soil for exposure assumptions relevant to an alternative land use..."* 







Site-specific conditions (e.g., other than residential/non-residential land use) may result in exposures different from those assumed in the default SRS and include:

- Active recreational use (playing fields and playgrounds)
- Passive recreational use (land/trails for walking, cycling, hunting)
- **Restricted access areas** (rights-of-way to inspect/repair of utilities)
- Infrequent access areas (ecological preservation & conservation areas)





### **Active Recreational**

- This land use includes sports playing fields, playgrounds, and motorcycle and all-terrain vehicle (ATV) use areas
- Active sports or using playground, with direct contact with surface soil
- Disturbance of surface soil is expected







### **Active Recreational**

- Limited to certain times of the year, time of day or sports season, time spent will vary with activity
- All potential activities should be considered in developing RME/ARS
- Exposure to surface soil expected to be greater than other alternative land uses
- Motorcycle, mountain biking, ATV use have unique exposure scenarios (e.g., traffic plus inhalation)
- Evaluate on site or AOC-specific basis; technical consultation advised





### **Active Recreational**

When determining RME for this land use, potential exposure assumptions to consider include:

- Expected age groups engaged in recreational activities
- How much time spent
- Will other children be present (e.g., younger siblings) how often?
- Will coaches be present for how long?
- Are there spectators?
- Are there maintenance workers how much time to perform maintenance? Are they subject to more exposure than others using the area?







### **Passive Recreational**

- Consists of land and trails for walking, cycling, hunting
- Largely undeveloped or environmentally sensitive area used for non-motorized activity
- People would be passing through the area with little time in one specific place
- Due to limited disturbance of the soil during these activities, expect minimal direct soil contact



### **Passive Recreational**

- Activities occur throughout the year
- All potential activities (e.g., walking, hiking, biking, jogging) should be considered to determine the RME/ARS, site or AOCspecific
- Depending on location (e.g., topography, activity) some areas may have both children and adults using area





### **Passive Recreational**

When determining the RME for this land use consider:

- Expected age groups using the area
- Time each age group will spend there
- Will other children (e.g., younger siblings) be present how often?
- Are there maintenance workers? Are they subject to more exposure than others using the area – possibly making them the most sensitive receptor?





### **Restricted Access**

- Consists of right-of-way areas used to inspect, maintain and repair utilities
- People may clear land, install, upgrade and repair utilities
- Expected minimal direct contact with surface/subsurface soil; some activity (e.g., earthmoving) could increase contact
- Likely performed by small groups of workers throughout the year
- Site or AOC-specific; all potential activities should be considered in determining the RME







### **Restricted Access**

When determining RME consider:

- Time days and hours per week a worker spends within the restricted access area
- If area is owned by single entity (e.g., utility) limiting contact within the area to while working for utility?
- Will others be able to enter the restricted access area (e.g., is it fenced or just has no trespassing signs)?





### **Infrequent Access**

- Includes ecological preservation and conservation areas
- People observing nature, bird watching or hunting (if permitted)
- Assumes people walk into the area, remain in one area for a long period, relocating infrequently
- No major disturbance of soil expected; may clear a small area, exposing surface soil







#### **Infrequent Access**

- These activities typically limited to certain times of the year or time of day (e.g., with migration of bird species)
- Length of time spent may vary greatly depending on the activity
- All activities that may happen must be considered in development of RME/ARS – site or AOC-specific





### **Summary of ARS for Soil Results**

- Table 2 has been provided as handout for reference
- Includes ARS for soil for six alternative land use examples, compared to default SRS
- Demonstrates how different activities and alternative land use can affect exposure and remedial standards
- Not the only possible scenarios that may be relevant for a given alternative land use
- NOT default ARS for soil values



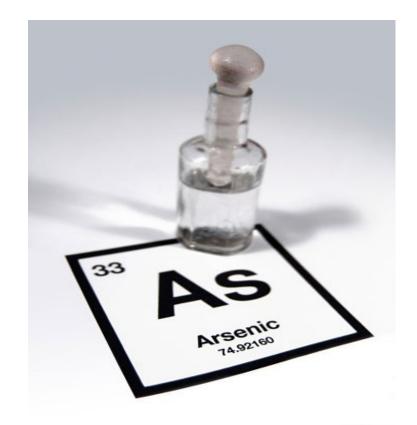


- Table 2 provides values derived using NJDEP calculators being discussed by Erica and Allan
- Includes ingestion-dermal & inhalation values along with reporting limit and background level that may also be basis for ARS/SRS
- Health risk-based values may be derived for all contaminants
- Repeat these are NOT default ARS for soil values because
  - All ARS are based on site or AOC-specific information, which may vary from examples in Table 2





### Summary of ARS Results - Table 2 See Handout

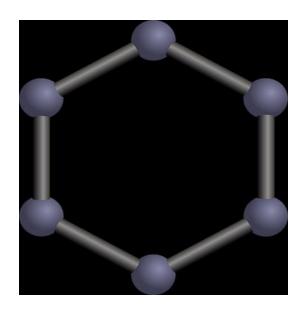

Table 2 - Summary of Example Alternative Remediation Standards Based on Site-Specific Exposure Variables

| Chemical                     | CAS                       | Default Values |                   |                     |                   | Active Recreation          |                  |              |                      | Panive Recreation |                  |                 |                   | Restricted Access<br>Area |                | Infrequent Access<br>Area |                |
|------------------------------|---------------------------|----------------|-------------------|---------------------|-------------------|----------------------------|------------------|--------------|----------------------|-------------------|------------------|-----------------|-------------------|---------------------------|----------------|---------------------------|----------------|
|                              |                           | Residential    | Footnote          | Non-<br>Residential | Footnote          | Sports<br>Playing<br>Field | Footnote         | Playground   | Footnote             | Jogger            | Footnote         | Hiker-<br>Biker | Footnote          | Utility<br>Worker         | Footnote       | Birder                    | Footnote       |
| Ingestion-Der                | malExpos                  | ure Pathwa     | v Soil Ren        | redistion Sta       | ndards (m         | o/leg)                     |                  |              |                      |                   |                  |                 |                   |                           |                |                           |                |
| Arsenic                      | 7440-38-2                 | 19             | Bkg <sup>11</sup> | 19                  | Bkg <sup>11</sup> | 19                         | Bkg <sup>n</sup> | 19           | Bkg <sup>11</sup>    | 19                | Bkg <sup>n</sup> | 19              | Bkg <sup>11</sup> | -40                       | ING-C          | 36                        | ING-C          |
| Benzene                      | 71-43-2                   | 3.0            | ING-C             | 16                  | ING-C             | 16                         | ING-C            | 6.2          | ING-C                | 17                | ING-C            | 17              | ING-C             | 300                       | ING-C          | 260                       | ING-C          |
| Benzo(a)pyrene <sup>12</sup> | 50-32-8                   | 0.51           | ING-C             | 2.3                 | ING-C             | 2.6                        | ING-C            | 1.1          | ING-C                | 2.5               | ING-C            | 2.8             | ING-C             | 44                        | ING-C          | 39                        | ING-C          |
| Cadmium                      | 7440-43-9                 | 71             | ING-N             | 1.100               | ING-N             | 380                        | ING-N            | 130          | ING-N                | 1.200             | ING-N            | 500             | ING-N             | 8,300                     | ING-N          | 19.000                    | ING-N          |
| 4.4'-DDT                     | 50-29-3                   | 1.9            | ING-C             | 9.5                 | ING-C             | 9.7                        | ING-C            | 3.9          | ING-C                | 10                | ING-C            | 11              | ING-C             | 180                       | ING-C          | 160                       | ING-C          |
| Manganese                    | 7439-96-5                 | 1.900          | ING-N             | 31.000              | ING-N             | 10.000                     | ING-N            | 3,300        | ING-N                | 35.000            | ING-N            | 13,000          | ING-N             | 230.000                   | ING-N          | 540.000                   | ING-N          |
| Mercury                      | 7439-97-6                 | 23             | ING-N             | 390                 | ING-N             | 130                        | ING-N            | 41           | ING-N                | 440               | ING-N            | 160             | ING-N             | 2.900                     | ING-N          | 6,700                     | ING-N          |
| Naphthalene                  | 91-20-3                   | 2.500          | ING-N             | 34.000              | ING-N             | 13.000                     | ING-N            | 4,300        | ING-N                | 39,000            | ING-N            | 17,000          | ING-N             | 260,000                   | ING-N          | 590.000                   | ING-N          |
| Vinyl Chloride               | 75-01-4                   | 0.97           | ING-C             | 5.0                 | ING-C             | 5.0                        | ING-C            | 2.0          | ING-C                | 5.5               | ING-C            | 5.5             | ING-C             | 95                        | ING-C          | 84                        | ING-C          |
| Xylenes                      | 1330-20-7                 | 12.000         | ING-N             | 190.000             | ING-N             | 63.000                     | ING-N            | 21,000       | ING-N                | 220.000           | ING-N            | 82,000          | ING-N             | NA                        | 2              | NA                        | 2              |
| Arsenic<br>Benzene           | 7440-38-2<br>71-43-2      | 1,100          | INH-C<br>INH-C    | 5,200               | INH-C<br>INH-C    | 61,000<br>120              | INH-C<br>INH-C   | 45,000<br>92 | INH-C<br>INH-C       | 46,000            | INH-C<br>INH-C   | 52,000<br>110   | INH-C<br>INH-C    | 99,000<br>200             | INH-C<br>INH-C | 88,000<br>180             | INH-C          |
| Benzene                      | 71-43-2                   | 2.2            | INH-C             | 11                  | INH-C             | 120                        | INH-C            | 92           | INH-C                | 93                | INH-C            | 110             | INH-C             | 200                       | INH-C          | 180                       | INH-C          |
| Benzo(a)pyrene <sup>12</sup> | 50-32-8                   | 3,500          | INH-C             | 16,000              | INH-C             | 110,000                    | INH-C            | 73,000       | INH-C                | 150,000           | INH-C            | 150,000         | INH-C             | 120,000                   | INH-C          | 280,000                   | INH-C          |
| Cadmium                      | 7440-43-9                 | 2,600          | INH-C             | 12,000              | INH-C             | 150,000                    | INH-C            | 110,000      | INH-C                | 110,000           | INH-C            | 120,000         | INH-C             | 240,000                   | INH-C          | 210,000                   | INH-C          |
| 4,4'-DDT                     | 50-29-3                   | NA             | ь                 | NA                  | b                 | NA                         | ь                | NA           | ь                    | NA                | ь                | NA              | ь                 | NA                        | ь              | NA                        | b              |
| Manganese                    | 7439-96-5                 | 87,000         | INH-N             | 400,000             | INH-N             | NA                         | a                | NA           | 2                    | NA                | 2                | NA              | 2                 | NA                        | 2              | NA                        | 2              |
| Mercury                      | 7439-97-6                 | 520,000        | INH-N             | NA                  | a,c               | NA                         | a,c              | NA           | a,c                  | NA                | a,c              | NA              | a,c               | NA                        | a,c            | NA                        | a,c            |
| Naphthalene                  | 91-20-3                   | 5.7            | INH-C             | 27                  | INH-C             | NA                         | a,c              | NA           | a,c                  | NA                | a,c              | NA              | a,c               | NA                        | a,c            | NA                        | a,c            |
| Vinyl Chloride               | 75-01-4                   | 1.4            | INH-C             | 6.4                 | INH-C             | 76                         | INH-C            | 56           | INH-C                | 57                | INH-C            | 64              | INH-C             | 120                       | INH-C          | 110                       | INH-C          |
| Xylenes                      | 1330-20-7                 | NA             | a,c               | NA                  | a,c               | NA                         | a,c              | NA           | a,c                  | NA                | a,c              | NA              | a,c               | NA                        | a,c            | NA                        | a,c            |
| More Restrict                | ive of Inge:<br>7440-38-2 | stion-Derm     | al and Inh        | alation Expo        | sure Path         | ways Soil R                | emediatio        | n Standards  | (mg/kg) <sup>d</sup> | 19                | Bkg"             | 19              | Bkg <sup>n</sup>  | 40                        | ING-C          | 36                        | ING-0          |
| Benzene                      | 71-43-2                   | 2.2            | INH-C             | 11                  | INH-C             | 16                         | ING-C            | 6.2          | ING-C                | 17                | ING-C            | 17              | ING-C             | 200                       | INH-C          | 180                       | INH-C          |
| Benzo(a)pyrene <sup>12</sup> | 50-32-8                   | 0.51           | ING-C             | 2.3                 | ING-C             | 2.6                        | ING-C            | 1.1          | ING-C                | 2.5               | ING-C            | 2.8             | ING-C             | 44                        | ING-C          | 39                        | ING-C          |
| Cadmium                      | 7440-43-9                 | 71             | ING-N             | 1.100               | ING-N             | 380                        | ING-N            | 130          | ING-C<br>ING-N       | 1.200             | ING-C<br>ING-N   | 500             | ING-C<br>ING-N    | 8,300                     | ING-C<br>ING-N | 19.000                    | ING-C<br>ING-N |
| 4.4'-DDT                     | 50-29-3                   | 1.9            | ING-C             | 9.5                 | ING-C             | 9.7                        | ING-C            | 3.9          | ING-C                | 1,200             | ING-C            | 11              | ING-C             | 180                       | ING-C          | 160                       | ING-C          |
| Manganese                    | 7439-96-5                 | 1.900          | ING-N             | 31,000              | ING-N             | 10.000                     | ING-N            | 3,300        | ING-C<br>ING-N       | 35,000            | ING-N            | 13,000          | ING-D             | 230,000                   | ING-C<br>ING-N | 540.000                   | ING-C<br>ING-N |
| Mercury                      | 7439-97-6                 | 23             | ING-N             | 390                 | ING-N             | 130                        | ING-N            | 41           | ING-N                | 440               | ING-N            | 15,000          | ING-N             | 2.900                     | ING-N          | 6,700                     | ING-N          |
| Naphthalene                  | 91-20-3                   | 5.7            | ING-IN<br>INH-C   | 27                  | INH-C             | 13.000                     | ING-N            | 4.300        | ING-N                | 39.000            | ING-N            | 17,000          | ING-N             | 260.000                   | ING-N          | 590.000                   | ING-N          |
| Vinvl Chloride               | 75-01-4                   | 0.97           | ING-C             | 5.0                 | ING-C             | 5.0                        | ING-C            | 2.0          | ING-D<br>ING-C       | 5.5               | ING-IN<br>ING-C  | 5.5             | ING-IN<br>ING-C   | 95                        | ING-C          | 84                        | ING-C          |
|                              | 1330-20-7                 | 12.000         | ING-C<br>ING-N    | 190.000             | ING-N             | 63.000                     | ING-C<br>ING-N   | 21,000       | ING-U<br>ING-N       | 220.000           | ING-C<br>ING-N   | 3.5             | ING-C<br>ING-N    | 95<br>NA                  |                | NA<br>NA                  | 0.0            |
| Xylenes                      | 1330-20-7                 | 12,000         | 1001-10           | 190,000             | 419411-19         | 05,000                     | 1001-19          | 21,000       | 110011-15            | 220,000           | 1001-0           | az,000          | TRAT-D            | DOM:                      | 2              | 1914                      | 88 🖷           |

# Table 2 ExamplesHow They Vary and What Drives Them

#### Arsenic

- Default based on state-wide background of 19 mg/kg
- Lower assumed exposure in restricted and infrequent access scenarios increases ARS values (e.g., utility worker - 40 mg/kg in Table 2)







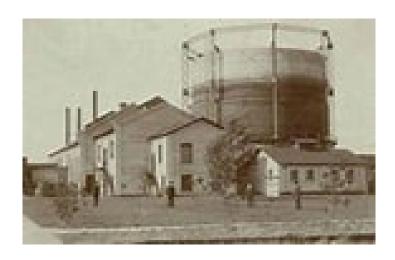

# Table 2 ExamplesHow They Vary and What Drives Them

### Benzene



- Inhalation exposure pathway is the driver for the default SRS
- Alternative land use results in ingestion-dermal exposure pathway as the driver for 4 of 6 scenarios
- This occurs due to similar toxicity values for the two exposure pathways

The benzene residential SRS for inhalation is 2.2 mg/kg; for ingestion-dermal 3.0 mg/kg.


 In scenarios where hours/day were adjusted (active and passive recreation) ingestion-dermal becomes the driver; however, where hours/day were not adjusted (restricted and infrequent access scenarios) inhalation remains the driver





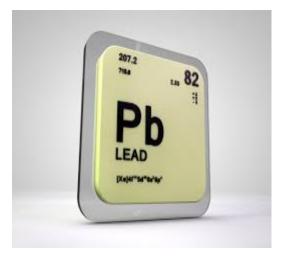
# Table 2 ExamplesHow They Vary and What Drives Them

### Benzo(a)pyrene



- ARS examples are slightly higher than SRS in most land use scenarios
- Both ingestion-dermal and inhalation values for restricted and infrequent use scenarios using calculator are notably higher than SRS
- The example scenarios assume less exposure, which drives higher ARS
- Like SRS, ARS examples are driven by the ingestiondermal pathway, with values orders of magnitude lower than for inhalation






# **Thank You!**





### **ARS for Soil-Born Lead**





Mark Maddaloni, DrPH, DABT Cardno/ChemRisk <u>swati.toppin@dep.nj.gov</u>





### **ARS Recommendations for Pb**

### • Unique Assessment

- No recognized threshold for neurocognitive effects in kids
  - CDC (2012) No measured BLL that's not associated with IQ deficits
- Biokinetic modeling approach based on predicted BLL
  - EPA IEUBK Model for Children
  - Policy position for establishing target BLL (moving target)

https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals





# **ARS Recommendations for Pb**

### • EPA Adult Pb Model (for non-residential adult exposures)

- Simplified biokinetic model
- Protects fetus of pregnant woman
- EPA All Ages Pb Model (in beta testing)
  - Models entire lifetime
  - Can model acute, intermittent and episodic exposures
  - Not quite ready for prime time





# **ARS Recommendations for Pb**

### • Requirement

### - Consult with NJDEP

http://www.state.nj.us/dep/srp/srra/technical\_consultation/

### Additional resources

- EPA Region 2 TRW Member
  - McPherson.Julie@epa.gov
- EPA Pb Model Hotline
  - 1 (800) 424-LEAD

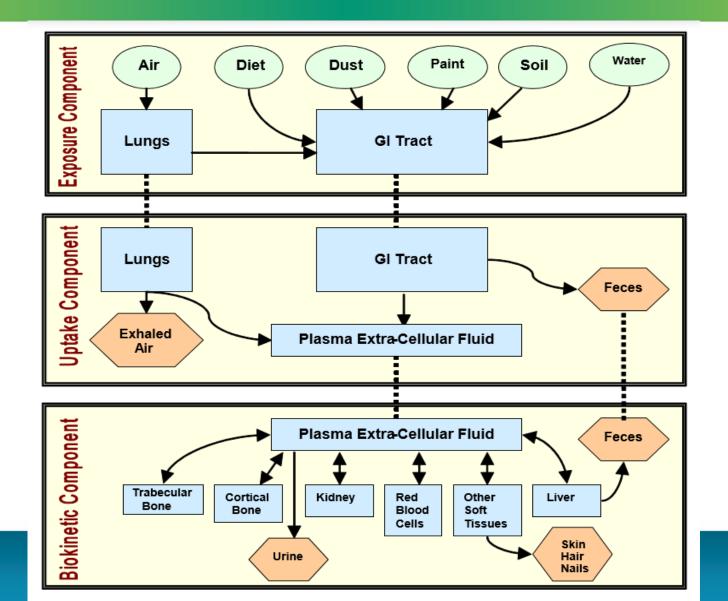




No shopping around for clean-up numbers!

96

# Land Use


- SRS for Residential 400 ppm
- SRS for Non-Residential 800 ppm (both values based on a target BLL of 10 ug/dl)







### **IEUBK Pb Model Input Parameters**







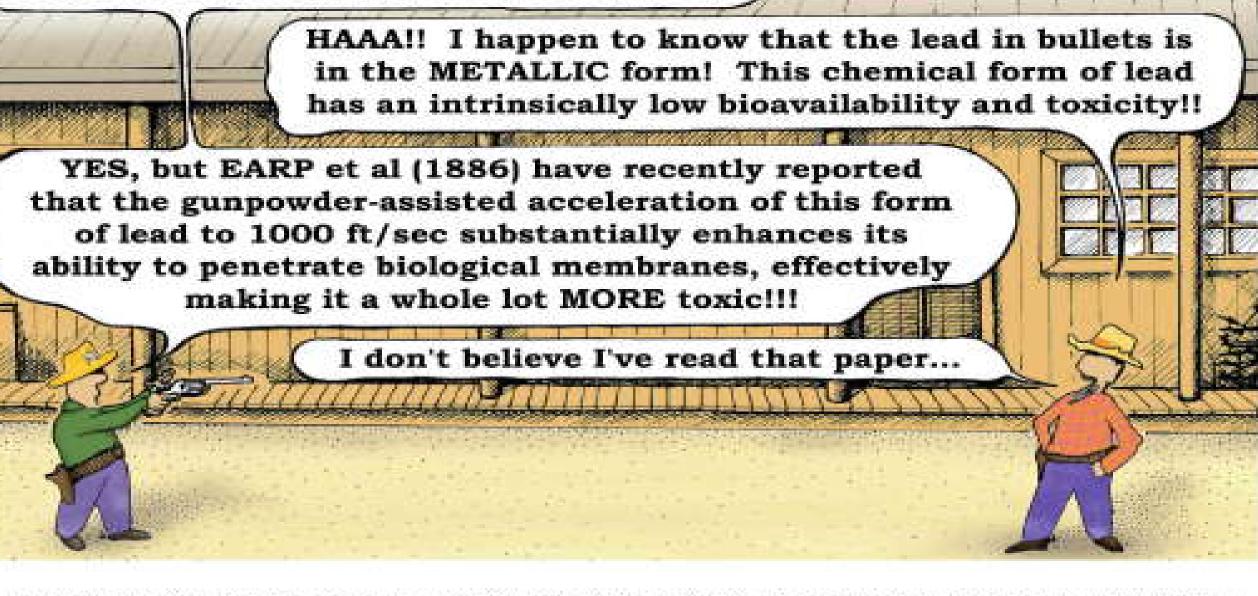
## IEUBK Pb Model Input Parameters Not Adjustable

- Maternal/neonatal
- GSD hard to support alternative value
- Same for MSD and soil/dust fractions
- Soil ingestion rate (in flux)
  - Moot for purpose of ARS development
  - NJDEP recommends using Version 1.1 of IEUBK Pb Model





# ARS for lead soil contamination Adjustable Input Parameters


- Site-specific alternative land use exposure scenario
  - Exposure Frequency (days/year) can be adjusted following USEPA's Assessing Intermittent or Variable Exposures at Lead Sites (2003)
  - Most meet minimum pseudo steady-state exposure criteria
    - 1 day/week for a 3 month continuous exposure duration
- Bioaccessibility/Bioavailability of lead in soils
  - Use of site-specific data for residential, nonresidential, or alt land use
  - EPA validated *in vitro* extraction test
    - Can cut both ways is default RBA (soil:water) is 60%

https://www.epa.gov/superfund/soil-bioavailability-superfund-sites-guidance





DON'T MOVE, or I'll fill you full of LEAD!!!



ENVIRONMENTAL SCIENTISTS IN THE WILD WEST

# **Questions?**





### BREAK





# Inhalation Exposure Pathway Alternative Remediation Standards Which do not Require Pre-Approval

Allan S. Motter Bureau of Environmental Evaluation and Risk Assessment <u>allan.motter@dep.nj.gov</u>





- Inhalation ARS based on physical properties does not require pre-approval from the Department prior to use (N.J.A.C. 7:26D-8.5)
- Technical Consultation with the Department is available upon request
- ARS Option details specified in N.J.A.C. 7:26D Appendix 7 and Alternative Remediation Standards Technical Guidance for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways



### ARS options developed in accordance with N.J.A.C. 7:26D Appendix 7 III(b) (preapproval not required)

- Depth Range of Contamination
- Soil Organic Carbon Content (f<sub>oc</sub>)
- Fraction of Vegetative Cover (V)



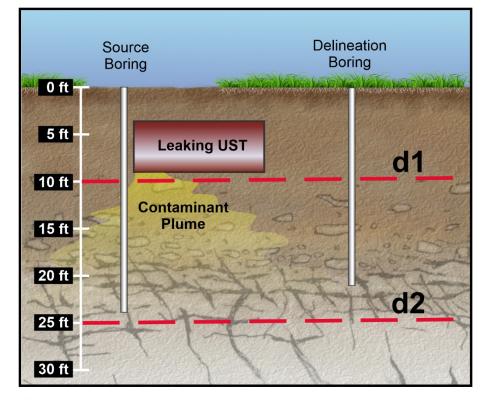


# **Depth Range of Contamination**

- Default 0 cm to infinity
- Effects Volatiles Only
- Determine contaminant depth
  - d1 = shallowest depth at Site or AOC where contamination exceeds default standard
  - d2 = deepest depth at Site or AOC where contamination exceeds default standard






# **Depth Range of Contamination**

- Convert depths to cm
- Use d1 and d2 in the Department's calculator
- Provide the following information to the Department:
  - The resultant ARS
  - A description and basis of how the input parameters were selected
  - A description of any institutional and engineering controls
    - If depth starts at 0 cm, then no institutional control, otherwise need one





### **Depth Range of Contamination**



• d1 = 10 feet

- 10 feet \* 12 inches/foot = 120 inches
- 120 inches \* 2.54 cm/inch = 304.8 cm
- d2 = 25 feet
  - 25 feet \* 12 inches/foot = 300 inches
  - 300 inches \* 2.54 cm/inch = 762 cm





# Soil Organic Carbon Content (f<sub>oc</sub>)

- Default 0.2% (0.002) kg/kg
- Effects Volatiles Only
- Determine  $f_{oc}$  and use in the Department's calculator
- Provide the following information to the Department:
  - The resultant ARS
  - A description and basis of how the input parameters were selected
  - A description of any institutional and engineering controls



# Soil Organic Carbon Content (f<sub>oc</sub>)

- Collect and analyze samples for determining  $\rm f_{\rm oc}$  in accordance with Department guidance
  - Minimum of three samples
  - Not in areas of high organic contamination interference
  - Representative of soil type and contaminant depth in AOC
- Analyze using Lloyd Kahn Method or equivalent





### **Test Your Knowledge**

#### **True or False:**

When collecting samples to determine  $f_{oc}$ , the Department's guidance recommends a minimum of 3 samples.

A. True

B. False

### **Test Your Knowledge**

#### **True or False:**

When collecting samples to determine  $f_{oc}$ , the Department's guidance recommends a minimum of 3 samples.

#### A. True

B. False

# Soil Organic Carbon Content (f<sub>oc</sub>)

- Average or lowest value (not less than 0.002):
  - Lowest if less than three samples
  - Lowest if difference is greater than an order of magnitude
  - Average if three or more samples and difference is less than an order of magnitude
- Calculator will determine appropriate  $f_{oc}$  if values are entered





## **Fraction of Vegetative Cover (V)**

- Default 50%
- Affects Particulates Only
- Determine V and use in the Department's calculator
- Provide the following information to the Department:
  - The resultant ARS
  - A description and basis of how the input parameters were selected
  - A description of any institutional and engineering control



### **Fraction of Vegetative Cover (V)**

- Impervious surfaces (concrete, asphalt, buildings) are not considered in V
- Vegetation and bare soil are considered in V
- V (versus soil) must be maintained and monitored to be an effective engineering control
- V is the amount of soil covered by vegetation using standard ecological techniques (e.g., grid or plot sampling)



#### **Fraction of Vegetative Cover (V)**



50% Vegetation

50% Vegetation

100% Vegetation





| NJDEP Calculator                            | ×              |
|---------------------------------------------|----------------|
| CALCULATE S<br>INHALATION                   |                |
| Residential                                 | Nonresidential |
| Calculate soil<br>organic carbon<br>content | Exit           |





|           | NJDEP 202                                                | 21 Inhalat            | ion Soil I  | Reme |
|-----------|----------------------------------------------------------|-----------------------|-------------|------|
| Site      | Name:                                                    | Generic Con           | taminated S | ite  |
| Cont      | aminant:                                                 | laphthalene           |             |      |
| Contami   | inant Param                                              | eters:                |             |      |
| Parameter | Definition                                               | Linits                | Value       | 2    |
| IUR       | Inhalation Unit<br>Risk Factor                           | (µg/m³) <sup>,1</sup> | 3.40E-05    |      |
| RfC       | Inhalation<br>Reference<br>Concentratio                  | mg/m³                 | 3.00E-03    |      |
| D;        | Diffusivity in<br>Air                                    | cm²/s                 | 6.05E-02    |      |
| D,        | Diffusivity in<br>Water                                  | cm2/s                 | 8.38E-06    |      |
| De        | Apparent<br>Diffusivity                                  | cm2/s                 | 4.46E-06    |      |
| к         | Soil Organic<br>Carbon-Water<br>Partition<br>Coefficient | cm³/g                 | 1.54E+03    |      |
| K,        | Soil-Water<br>Partition<br>Coefficient                   | cm³/g                 | 3.09E+00    |      |
| H.        | Henry's Law<br>Constant                                  | dimensionless         | 1.80E-02    |      |
| RL        | Soil Reporting<br>Limit                                  | mg/kg                 | 0.17        |      |
| S         | Water<br>Solubility                                      | mg/L                  | 3.10E+01    |      |
| C         | Soil<br>Saturation<br>Limit                              | mg/kg                 | 1.00E+02    |      |
| Exposure  | Parameter                                                | s:                    |             |      |
| Parameter | Definition                                               | Linits                | Value       |      |
| EF        | Exposure<br>Frequency                                    | days/year             | 350         |      |
| ED        | Exposure<br>Duration                                     | years                 | 26          |      |
| ET        | Exposure Time                                            | hr/day                | 24          |      |
| LT        | Lifetime                                                 | years                 | 70          |      |
| т         | Exposure<br>Interval                                     | seconds               | 8.20E+08    |      |
| AT        | Averaging Time                                           | days/year             | 365         |      |
| THQ       | Target Hazard<br>Quotient<br>Target Cancer               | dimensionless         | 1           |      |
| TR        | Target Cancer<br>Bisk                                    | dimensionless         | 1.00E-06    |      |

| ediation Standard Calculator: Residential |           |                                                 |                        |       |        |
|-------------------------------------------|-----------|-------------------------------------------------|------------------------|-------|--------|
|                                           |           |                                                 | Date:                  | 6/3   | 3/2021 |
|                                           |           |                                                 | CAS No.:               | 91    | -20-3  |
|                                           |           | <u> </u>                                        | Evaluated by:          | L     | SRP    |
|                                           | Soil Par  | ameters:                                        |                        |       | <      |
|                                           | Parameter | Definition                                      | Linits                 | Value |        |
|                                           | θ.        | Water-filled<br>Soil Porosity                   | dimensionless<br>(v/v) | 0.23  |        |
|                                           | Θ,        | Air-filled Soil<br>Porosity                     | dimensionless<br>(v/v) | 0.18  |        |
|                                           | f         | (Fraction)<br>Organic Carbon<br>Content of Soil | dimensionless<br>(w/w) | 0.002 |        |
|                                           | p.        | Dry Soil Bulk<br>Density                        | g/cm³                  | 1.5   |        |
|                                           | n         | Total Soil<br>Porosity                          | dimensionless<br>(v/v) | 0.41  |        |
|                                           |           |                                                 |                        |       |        |

| Emission/Dispersion Parameters: |                                                    |                      |                        |  |
|---------------------------------|----------------------------------------------------|----------------------|------------------------|--|
| Parameter                       | Definition                                         | Linits               | Value                  |  |
| QIC                             | Inverse<br>Concentration<br>at Center of<br>Source | (g/m²-s)/<br>(kg/m³) | 86.6                   |  |
| VF                              | Soil-to-Air<br>Volatilization<br>Factor            | m³/kg                | 6.94E+04               |  |
| TAVF                            | Time-averaged<br>volatilization<br>flux            | mg/cm²/day           | Optional<br>Calculated |  |
| PEF                             | Particulate<br>Emission<br>Factor                  | m³/kg                | 1.67E+09               |  |

| Scenari   | o Paramete                      | ,             |          |                              |
|-----------|---------------------------------|---------------|----------|------------------------------|
| Parameter | Definition                      | Units         | Value    | If values<br>entered.        |
| LL1       | Depth or Lop<br>of              | cm            | Optional | click here to<br>recalculate |
| LL        | of<br>Cashania asking           | cm            | Optional | VF                           |
| ۷         | Fraction<br>Vegetative<br>Cover | dimensionless | 0.5      | in a d                       |

#### Calculated Inhalation Soil Criteria:

| Inh.,.           | Volatile, Cancer          | mg/kg | 5.7    |             |
|------------------|---------------------------|-------|--------|-------------|
| Inh.,.           | Volatile,<br>Noncancer    | mg/kg | 220    | above Csat  |
| Inh              | Particulate,<br>Cancer    | mg/kg | 140000 |             |
| Inh <sub>e</sub> | Particulate,<br>Noncancer | mgłkg | 5E+06  | > IE+06 ppm |

Residential Inhalation Soil Remediation Standard:

5.7 mg/kg CONTROLLED BY THE VOLATILE CARCINOGENIC PATHWAY

#### Soil Parameters:

| Parameter       | Definition                                      | Units                  | Value |
|-----------------|-------------------------------------------------|------------------------|-------|
| θ <sub>w</sub>  | Water-filled<br>Soil Porosity                   | dimensionless<br>(v/v) | 0.23  |
| θa              | Air-filled Soil<br>Porosity                     | dimensionless<br>(v/v) | 0.18  |
| f <sub>oc</sub> | (Fraction)<br>Organic Carbon<br>Content of Soil | dimensionless<br>(w/w) | 0.002 |
| ρ <sub>b</sub>  | Dry Soil Bulk<br>Density                        | g/cm <sup>3</sup>      | 1.5   |
| n               | Total Soil<br>Porosity                          | dimensionless<br>(v/v) | 0.41  |

#### Scenario Parameters:

|           |                                      |               |          | -3 |                              |
|-----------|--------------------------------------|---------------|----------|----|------------------------------|
| Parameter | Definition                           | Units         | Value    |    | lf values<br>entered,        |
| LL1       | Depth of Top of<br>Contamination     | cm            | Optional | ļ  | click here to<br>recalculate |
| LL        | Depth of Bottom of<br>Contaminantion | cm            | Optional | J  | VF                           |
| V         | Fraction<br>Vegetative<br>Cover      | dimensionless | 0.5      |    |                              |

#### Calculated Inhalation Soil Criteria:

|   | Inh <sub>v,c</sub> | Volatile, Cancer          | mg/kg | 5.7     |            |
|---|--------------------|---------------------------|-------|---------|------------|
|   | Inh <sub>v,n</sub> | Volatile,<br>Noncancer    | mg/kg | 220     | above Csat |
|   | Inh <sub>p,c</sub> | Particulate,<br>Cancer    | mg/kg | 140000  |            |
| ġ | Inh <sub>p,n</sub> | Particulate,<br>Noncancer | mg/kg | 5200000 | >1E+06 ppm |

119

#### Soil Parameters:

| Parameter       | Definition                                      | Units                  | Value |         |
|-----------------|-------------------------------------------------|------------------------|-------|---------|
| θ <sub>w</sub>  | Water-filled<br>Soil Porosity                   | dimensionless<br>(v/v) | 0.23  |         |
| θa              | Air-filled Soil<br>Porosity                     | dimensionless<br>(v/v) | 0.18  |         |
| f <sub>oc</sub> | (Fraction)<br>Organic Carbon<br>Content of Soil | dimensionless<br>(w/w) | 0.003 | changed |
| ρ <sub>b</sub>  | Dry Soil Bulk<br>Density                        | g/cm <sup>3</sup>      | 1.5   |         |
| n               | Total Soil<br>Porosity                          | dimensionless<br>(v/v) | 0.41  |         |

#### Scenario Parameters: depth range modified

| Parameter | Definition                           | Units         | Value    | If values<br>entered,        |
|-----------|--------------------------------------|---------------|----------|------------------------------|
| LL1       | Depth of Top of<br>Contamination     | cm            | 304.8    | click here to<br>recalculate |
| LL        | Depth of Bottom of<br>Contaminantion | cm            | 7.62E+02 | VF                           |
| V         | Fraction<br>Vegetative<br>Cover      | dimensionless | 0.5      | -                            |

#### Calculated Inhalation Soil Criteria:

| Inh <sub>v,c</sub> | Volatile, Cancer          | mg/kg | 3.9E+09 | above Csat |
|--------------------|---------------------------|-------|---------|------------|
| Inh <sub>v,n</sub> | Volatile,<br>Noncancer    | mg/kg | 1.5E+11 | above Csat |
| Inh <sub>p,c</sub> | Particulate,<br>Cancer    | mg/kg | 140000  |            |
| Inh <sub>p,n</sub> | Particulate,<br>Noncancer | mg/kg | 5200000 | >1E+06 ppm |

Residential Inhalation Soil Remediation Standard:

140000 mg/kg

CONTROLLED BY THE PARTICULATE CARCINOGENIC PATHWAY

#### Soil Parameters:

| Parameter       | Definition                                      | Units                  | Value |         |
|-----------------|-------------------------------------------------|------------------------|-------|---------|
| θ <sub>w</sub>  | Water-filled<br>Soil Porosity                   | dimensionless<br>(v/v) | 0.23  |         |
| θa              | Air-filled Soil<br>Porosity                     | dimensionless<br>(v/v) | 0.18  |         |
| f <sub>oc</sub> | (Fraction)<br>Organic Carbon<br>Content of Soil | dimensionless<br>(w/w) | 0.003 | changed |
| ρ <sub>b</sub>  | Dry Soil Bulk<br>Density                        | g/cm <sup>3</sup>      | 1.5   |         |
| n               | Total Soil<br>Porosity                          | dimensionless<br>(v/v) | 0.41  |         |

#### Scenario Parameters: depth range modified

| Parameter | Definition                           | Units         | Value    | If values<br>entered,        |
|-----------|--------------------------------------|---------------|----------|------------------------------|
| LL1       | Depth of Top of<br>Contamination     | cm            | 304.8    | click here to<br>recalculate |
| LL        | Depth of Bottom of<br>Contaminantion | cm            | 7.62E+02 | VF                           |
| V         | Fraction<br>Vegetative<br>Cover      | dimensionless | 0.75     | changed                      |

#### Calculated Inhalation Soil Criteria:

| Inh <sub>v,c</sub> | Volatile, Cancer          | mg/kg | 3.9E+09 | above Csat |
|--------------------|---------------------------|-------|---------|------------|
| Inh <sub>v,n</sub> | Volatile,<br>Noncancer    | mg/kg | 1.5E+11 | above Csat |
| Inh <sub>p,c</sub> | Particulate,<br>Cancer    | mg/kg | 270000  |            |
| Inh <sub>p,n</sub> | Particulate,<br>Noncancer | mg/kg | 1000000 | >1E+06 ppm |

**Residential Inhalation Soil Remediation Standard:** 

270000 mg/kg

CONTROLLED BY THE PARTICULATE CARCINOGENIC PATHWAY

# Thank you!





Allan S. Motter Bureau of Environmental Evaluation and Risk Assessment <u>allan.motter@dep.nj.gov</u>





- LSRP must complete *Alternative or Interim Remediation Standard and/or Screening Level Application Form* and *Remediation Standard Notification Spreadsheet*
- The form, spreadsheet, and instructions for both can be found under "General Forms" in the Forms Library

<u>NJDEP SRP - Site Remediation Reform Act (SRRA): Forms</u> (state.nj.us)





2.

Date Stamp

No Pre-Approval Required:

New Jersey Department of Environmental Protection Site Remediation and Waste Management Program

ALTERNATIVE OR INTERIM REMEDIATION STANDARD AND/OR SCREENING LEVEL APPLICATION FORM

NOTE: This form shall be completed for all contaminants for which interim or alternative remediation standards are being implemented and/or requested for a site or area of concern for the ingestion-dermal exposure pathway, inhalation exposure pathway, migration to ground water exposure pathway, or indoor air vapor intrusion exposure pathway. This form is also used for development of interim or alternative vapor intrusion screening levels (ground water, soil gas, and rapid action level for indoor air), ecological risk-based remediation goals, and/or ecological risk management decision goals. The form shall be used regardless of whether Department pre-approval is required.

| SECTION A. SITE NAME AND LOC     |                                       |
|----------------------------------|---------------------------------------|
| Site Name:                       |                                       |
| List all AKAs:                   |                                       |
| Street Address:                  |                                       |
| Municipality:                    | (Township, Borough, Village, or City) |
| County:                          | Zip Code:                             |
| Program Interest (PI) Number(s): |                                       |
| Case Tracking Number(s):         |                                       |

#### SECTION B. REMEDIATION STANDARD NOTIFICATION SPREADSHEET

Complete and attach the Remediation Standard Notification Spreadsheet which can be found at: http://www.nj.gov/dep/srp/srra/forms/. This form will not be processed by the NJDEP if the spreadsheet is not attached.

#### SECTION C. PURPOSE FOR SUBMISSION

- 1. Pre-Approval Required:
  - Ingestion-Dermal Alternative Soil Remediation Standard
  - Inhalation Alternative Soil Remediation Standard (Exposure Factors)
  - Migration to Ground Water Alternative Soil Remediation Standard
  - SESOIL
  - SESOIL/AT123D
  - Dilution-Attenuation Factor (DAF)
  - Ground Water Quality Standard for Class I or Class III classification
  - Indoor Air Vapor Intrusion Alternative Remediation Standard
  - Ecological Risk-Based Remediation Goal
  - Ecological Risk Management Decision Goal
  - Ecological Remediation Goal Based on Background Concentration
     Development of Interim Remediation Standard
  - Soil Ingestion-Dermal Exposure Pathway
  - Soil Inhalation Exposure Pathway
  - Migration to Ground Water Exposure Pathway
  - Indoor Air Vapor Intrusion Exposure Pathway
  - Standard Developed Using Alternative Method Not in Rule

Inhalation Alternative Soil Remediation Standard Vegetative Cover Organic Carbon Content of Soil Depth of Contamination Migration to Ground Water Alternative Soil Remediation Standard Soil-Water Partition Equation (SWPE) except when site-specific DAF is proposed Synthetic Precipitation Leaching Procedure (SPLP) except when site-specific DAF is proposed Organic Carbon Content of Soil Narrative Standards Immobile Chemicals Site Soil and Ground Water Data Evaluation Vapor Intrusion Alternative Screening Level Ground Water Soil Gas Rapid Action Level for Indoor Air Development of Interim Vapor Intrusion Screening Level Alternative Ecological Screening Criteria

#### SECTION D. PERSON RESPONSIBLE FOR CONDUCTING THE REMEDIATION INFORMATION AND CERTIFICATION

| Full Legal Name of the Person Resp | onsible for Conducting the Remediatio |                 |
|------------------------------------|---------------------------------------|-----------------|
| Representative First Name:         | Representa                            | tive Last Name: |
| Title:                             |                                       |                 |
| Phone Number:                      | Ext:                                  | Fax:            |
| Mailing Address:                   |                                       |                 |
| City/Town:                         | State:                                | Zip Code:       |
| Email Address:                     |                                       |                 |

This certification shall be signed by the person responsible for conducting the remediation who is submitting this notification in accordance with Administrative Requirements for the Remediation of Contaminated Sites rule at N.J.A.C. 7:26C-1.5(a).

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein, including all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

Signature: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_





| A           |                                                                                                                                                    | В        | С          | D                                           | E                                                       | F                        | G                                           | Н               | I                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------------------------------------|---------------------------------------------------------|--------------------------|---------------------------------------------|-----------------|------------------|
| 2<br>3<br>4 | 2       3       New Jersey Department of Environmental Protection         3       Site Remediation and Waste Management Program       Instructions |          |            |                                             |                                                         |                          |                                             |                 |                  |
| 5           |                                                                                                                                                    | REMEDIAT | ION STAN   | DARD NOTIFICA                               | TION SPREADSHEET                                        | Site Name:               | Generic Contaminated Site                   |                 | .                |
| 6           |                                                                                                                                                    |          |            | FOR                                         |                                                         | Program Interest Number: | 123456789                                   |                 |                  |
|             |                                                                                                                                                    |          |            | TIVE REMEDIATION STA<br>TIVE SCREENING LEVE |                                                         |                          |                                             |                 |                  |
| _           |                                                                                                                                                    |          | 01112121   |                                             | -                                                       |                          |                                             |                 |                  |
| -           |                                                                                                                                                    |          |            |                                             |                                                         |                          |                                             | Default         | Proposed         |
|             |                                                                                                                                                    |          |            |                                             |                                                         |                          |                                             | Remediation     | Remediation      |
|             |                                                                                                                                                    |          |            |                                             |                                                         |                          |                                             | Standard/       | Standard/        |
|             |                                                                                                                                                    |          |            |                                             |                                                         |                          |                                             | Screening       | Screening        |
|             |                                                                                                                                                    |          |            |                                             |                                                         |                          |                                             | level/          | Level/Ecological |
|             |                                                                                                                                                    |          |            | Concentration                               |                                                         |                          |                                             | Ecological      | Goal/Ecological  |
|             |                                                                                                                                                    |          |            | Range on Site                               |                                                         |                          | Type of Remediation Standard/ Screening     | Criterion       | Criterion        |
| 8           | Chemic                                                                                                                                             | cal Name | CAS Number | (include units)                             | Exposure Pathway and Option                             | Scenario                 | Level/ Ecological Goal/Ecological Criterion | (include units) | (include units)  |
| 9           | Benzene                                                                                                                                            |          | 71-43-2    | ND - 28 mg/kg                               | Inhalation- Depth of Contamination                      | Other                    |                                             | 2.2 mg/kg       | 14 mg/kg         |
| 10          | Benzene                                                                                                                                            |          | 71-43-2    | ND - 28 mg/kg                               | Ingestion-Dermal                                        | Other                    |                                             | 3.0 mg/kg       | 13 mg/kg         |
| 11<br>12    | Benzene                                                                                                                                            |          | 71-73-2    | ND - 28 mg/kg                               | Migration to Ground Water – Soil Water Partition Equati | ion 🔹 Other              | Alternative Standard                        | 0.0094 mg/kg    | 0.094 mg/kg      |
| 12          |                                                                                                                                                    |          | 8          |                                             |                                                         |                          | n                                           |                 |                  |
| 13          |                                                                                                                                                    | I        |            |                                             |                                                         | I                        | 1                                           | I               | I                |





| Exposure Pathway and Option                                       |   |
|-------------------------------------------------------------------|---|
|                                                                   |   |
| Ingestion-Dermal                                                  | ~ |
| Inhalation - Exposure Factors                                     |   |
| Inhalation-Vegetative Cover                                       |   |
| Inhalation- Organic Carbon Content of Soil                        |   |
| Inhalation- Depth of Contamination                                |   |
| Migration to Ground Water – Soil Water Partition Equation         |   |
| Migration to Ground Water – DAF                                   |   |
| Migration to Ground Water – SPLP                                  | ~ |
| Migration to Ground Water – SESOIL model                          | / |
| Migration to Ground Water – SESOIL/AT123D model                   |   |
| Migration to Ground Water - Immobile chemical                     |   |
| Migration to Ground Water- Site Soil and GW Data Evaluation       |   |
| Migration to Ground Water- GWQS for Class I or III Classification | / |
| Vapor Intrusion Indoor Air Remediation Standard                   |   |
| Vapor Intrusion Soil Gas Screening Level                          |   |
| Vapor Intrusion Ground Water Screening Level                      |   |
| Vapor Intrusion Rapid Action Level                                |   |
| Ecological Risk Based Remediation Goal                            |   |
| Ecological Risk Management Decision Goal                          |   |
| Ecological Screening Criterion                                    | ~ |

|                                                          | Scenario | - | Type of Remediation Standard/ Screeni<br>Level/ Ecological Goal/Ecological Criteri                                                                                                       |  |
|----------------------------------------------------------|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Non-residential<br>Not Applicable<br>Other<br>Ecological |          | - | Alternative Standard<br>Interim Standard<br>Alternative Screening Level<br>Interim Screening Level<br>Ecological Risk Based Remediation Goal<br>Ecological Risk Management Decision Goal |  |





- Pursuant to N.J.A.C. 7:26D Appendices 6 & 7, the following is required to be submitted with the form and spreadsheet:
  - ARS calculations using Department's calculator or Pb model
  - List of modified parameters
  - Description of justification of site-specific parameters
  - Institutional and engineering controls (as needed)
  - Remedial Action Permit, pursuant to N.J.A.C. 7:26C-7 (as needed)





# **Questions?**







# Vapor Intrusion Technical Guidance, Screening Levels, and Development of Alternative Values

Erica Snyder, M.S. Bureau of Environmental Evaluation and Risk Assessment erica.snyder@dep.nj.gov





## **Committee Members**

#### NJDEP

- Carey Compton (Chair, retired)
- Nicole Kalaigian, Chair
- John Boyer (retired)
- Diane Groth (retired)
- Andrew Sites (retired)
- Erica Snyder
- Chad VanSciver

#### **Stakeholders**

- Ken Bird, Woodard and Curran Consultants
- Brian Blum, Langan Consultants
- Scott Drew, Geosyntec Consultants
- John Engdahl, Speedway
- Peter Sorge, JM Sorge, Inc.





## **Additional Technical Assistance**

#### NJDEP

- Paul Bauer
- Barry Frasco
- David Haymes
- Alex Iannone
- Steve MacGregor
- Sana Qureshi
- Paul Sanders (retired)
- Bridget Sweeney
- Renee Wright



#### **Stakeholders**

- Gunnar Barr, OBAR Systems
- Bill Morris, Vapor Mitigation Systems

#### What's New?

- Pursuant to N.J.A.C. 7:26D, Indoor Air Screening Levels are now Indoor Air Remediation Standards (IARS)
- Vapor Intrusion Technical (VIT) Guidance (version 5.0)
- Vapor Intrusion Screening Levels (VISL) updated to be consistent with new IARS





### What's New?

- Basis and Background Documents:
  - IARS for the Vapor Intrusion Exposure Pathway
  - Vapor Intrusion Screening Levels
- Updated NJDEP Johnson and Ettinger (J&E) Spreadsheets



#### Where Can I Find It All?

#### Department's Vapor Intrusion Pathway Website Updated!!!!!!!!!!

#### NJDEP SRP - Guidance: Vapor Intrusion Pathway - Indoor Air





#### Site Remediation Program

Guidance Documents Vapor Intrusion

#### Vapor Intrusion Pathway

The presence of volatile chemicals in contaminated soil or ground water offers the potential for chemical vapors to migrate through subsurface soils and/or preferential pathways (such as underground utilities) thereby impacting the indoor air quality of area buildings. Vapor intrusion refers to this migration of volatile chemicals from the subsurface into overlying buildings. The vapor intrusion information linked from this page represent specific guidance developed by the Department to assist in the investigation of the vapor intrusion pathway at contaminated sites.

The Vapor Intrusion Technical Guidance Version 5.0, Posted May 2021

It is recommended that the user periodically refer to the NJDEP Vapor Intrusion web site for the latest information on the vapor intrusion pathway.

#### Vapor Intrusion Technical Information and Updates:

- Background Levels of Volatile Organic Chemicals in Homes: A Review of Recent Literature Plated August 20
- Installation Procedures for Permanent Sub-slab Probes Posted August 2016
- Vapor Intrusion Template Letters & Results Tables Posted May 2017
- Vapor Intrusion Screening Levels and Indoor Air Remediation Standards Tables Posted May 2021
- Comparison of 2013 and 2021 Vapor Intrusion Screening Levels and Indoor Air Remediation Standards
  - <u>Comparison of 2013 and 2021 Ground Water Screening Levels</u> Posted May 2021
  - <u>Comparison of 2013 and 2021 Soil Gas Screening Levels</u> Posted May 2021
  - <u>Comparison of 2013 Indoor Air Screening Levels and 2021 Indoor Air Remediation Standards</u> Posted May 2021
  - <u>Comparison of 2013 and 2021 Rapid Action Levels</u> Posted May 2021
- Vapor Intrusion Screening Levels Basis and Background Posted May 2021
- Indoor Air Remediation Standards for the Vapor Intrusion Exposure Pathway Basis and Background Posted May 2021
- <u>Revised Instructions for the Johnson & Ettinger Spreadsheets NJDEP Version</u> Posted May 2021
- Important Information about Vapor Mitigation Systems and Power Outages Posted 5 November 2012, Updated 5 March 2018
- List of Certified Labs

#### Analysis of naphthalene and 2-methylnaphthalene for vapor intrusion samples

The Department completed its evaluation of the provisions of N.J.A.C. 7:26E-2.1(c)3 and the Vapor Intrusion Technical Guidance (Version 3.1) as it relates to the analysis of naphthalene and 2-methylnaphthalene for vapor intrusion (VI) samples. Based on a continuing review of scientific information, effective July 16, 2013, the Department is requiring the following:

The analysis for 2-methylnaphthalene will not be required for VI samples collected during the investigation of kerosene, jet fuel, diesel fuel, fuel oil No. 2, and heavier petroleum products. The Department intends to update the Technical Requirements for Site Remediation to remove the requirement to analyze VI samples for 2-methylnaphthalene. Until the rule is updated, persons responsible can apply a variance pursuant to N.J.A.C. 7:26E-1.7 to not perform this analysis. The Department has already updated other posted web documents to reflect this change.

Naphthalene analysis will be required for VI samples collected during the investigation of kerosene, jet fuel, diesel fuel, fuel oil No. 2, and heavier petroleum products. In addition to USEPA Method TO-17, the Department will also allow the use of USEPA Method TO-15, NJDEP Method Low Level TO-15 and USEPA Method TO-13 A. Any laboratory performing the methods must have the applicable laboratory certifications and must have a demonstrated reporting limit of less than or equal to 3 ug/m3 consistent with N.J.A.C. 7:26E-2.1(a)3.

#### Vapor Intrusion Pathway Archive documents



- Fact Sheet: Subsurface Depressurization Systems
- Common Household Sources of Background Indoor Air Contamination
- NJDOH's Fact Sheet: Potential Health Risks Associated with Exposures to Trichloroethylene (TCE) in the Indoor Air [pdf] Posted 1 June 2016

#### Help for the file formats

#### Related Links

- NJDEP Office of Quality Assurance
- New Analytical Method for Volatile Organics in Air NJDEP-LLTO-15- 3/2007



SRP Home | DEP Home







NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

SITE REMEDIATION AND WASTE MANAGEMENT PROGRAM



137

#### **VAPOR INTRUSION TECHNICAL GUIDANCE**



May 2021 Version 5.0



## Vapor Intrusion Technical Guidance Version 5.0

- Appendix G updated to provide guidance on the derivation and application of the new IARS, VISL, and alternative values
- Global change of "Indoor Air Screening Level" to "IARS" for the vapor intrusion exposure pathway"





## Vapor Intrusion Technical Guidance Version 5.0

#### • Section 6.1.1.6 of VIT updated

- Mitigation based on preliminary data without a confirmed completed VI pathway
- Applies to new construction/retrofitting existing building with VI mitigation system (vapor barrier, SSDS)
- Sampling requirements follow N.J.A.C. 7:26E-1.15
- No longer automatic IEC designation





### Vapor Intrusion Technical Guidance Version 5.0

• Other minor revisions identified in the "Vapor Intrusion Technical Guidance Change Log"





#### **Site Remediation Guidance Library**

| $\leftarrow \rightarrow C$ $\bigcirc$ https://www.nj.gov/d | - → C b https://www.nj.gov/dep/srp/guidance/index.html#vi                                                                                             |  |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 33.                                                        |                                                                                                                                                       |  |  |  |  |
| Vapor Intrusion                                            |                                                                                                                                                       |  |  |  |  |
| Brief Description of Document                              |                                                                                                                                                       |  |  |  |  |
| Document:                                                  | <u>Vapor Intrusion Technical Guidance Page</u><br>Version 5.0, Issued 5/2021, Posted 5/17/2021<br>https://www.nj.gov/dep/srp/guidance/vaporintrusion/ |  |  |  |  |
| Change Log:                                                | <u>Vapor Intrusion Technical Guidance Change Log</u> [pdf 84 Kb]<br>Posted 5/17/2021                                                                  |  |  |  |  |
| Response to Comments:                                      | Updates to the Vapor Intrusion Technical Guidance Response to Comments [pdf 425 Kb] Version 5.0 May 2021, Posted 5/17/2021                            |  |  |  |  |
| Training Links on this topic:                              | <u>SRWMP Training - Vapor Intrusion - Webinar</u>                                                                                                     |  |  |  |  |





# Vapor Intrusion Screening Levels (VISL) Updates

- Ground water (GWSL), soil gas (SGSL), and indoor air rapid action levels (RAL) for vapor intrusion updated to be consistent with IARS
- List of 35 chemicals is based on those constituents included in the USEPA Volatile Organic Compounds (VOC) Target Compound List (TCL) and the NJDEP-SRP Low Level USEPA TO-15 Air Analytical Method. Elemental mercury is also included.





# Vapor Intrusion Screening Levels (VISL) Updates

- 14 chemicals dropped from previous list
  - 3 chemicals not on TCL List (bromoethene, 1,3-butadiene, 3chloropropene)
  - 11 chemicals without appropriate toxicological information
- 2 contaminants added
  - 1,4-dioxane and 1,2,4-trimethylbenzene





## VISL and IARS Tables on Vapor Intrusion Pathway Website

- New Vapor Intrusion Screening Levels and Indoor Air Remediation Standards Tables
  - Table 1: Default GWSL, SGSL, and IARS
  - Table 2: RAL for Indoor Air
  - Table 3: GWSL for Alternate Soil Textures
- Comparison Tables of the former 2013 values and new 2021 values





#### TABLE 1 NJDEP MASTER TABLE VAPOR INTRUSION SCREENING LEVELS AND INDOOR AIR REMEDIATION STANDARDS

|                                          |           | Ground Water        | Soil Gas Scre   | ening Levels    | Indoor Air Remediation Standards |                  |  |
|------------------------------------------|-----------|---------------------|-----------------|-----------------|----------------------------------|------------------|--|
| Chemical                                 | CAS No.   | Screening Levels    | Residential     | Nonresidential  | Residential                      | Nonresidential   |  |
|                                          |           | μg/L                | $\mu g/m^3$     | $\mu g/m^3$     | $\mu g/m^3$                      | $\mu g/m^3$      |  |
| Acetone (2-propanone)                    | 67-64-1   | -                   | -               | -               | -                                | -                |  |
| Benzene                                  | 71-43-2   | 23ª                 | 18              | 79              | 0.64 <sup>b</sup>                | 1.6              |  |
| Bromodichloromethane                     | 75-27-4   | -                   | -               | -               | -                                | -                |  |
| Bromoform                                | 75-25-2   | -                   |                 | -               | -                                | -                |  |
| Bromomethane (methyl bromide)            | 74-83-9   | 20                  | 260             | 1,100           | 5.2                              | 22               |  |
| 2-Butanone (methyl ethyl ketone)         | 78-93-3   | 2,500,000           | 260,000         | 1,100,000       | 5,200                            | 22,000           |  |
| Carbon disulfide                         | 75-15-0   | 1,500               | 36,000          | 150,000         | 730                              | 3,100            |  |
| Carbon tetrachloride                     | 56-23-5   | 1.0 <sup>c</sup>    | 23              | 100             | 1.3 <sup>b</sup>                 | 2.0              |  |
| Chlorobenzene                            | 108-90-7  | 770                 | 2,600           | 11,000          | 52                               | 220              |  |
| Chloroethane (ethyl chloride)            | 75-00-3   | 26,000              | 520,000         | 2,200,000       | 10,000                           | 44,000           |  |
| Chloroform                               | 67-66-3   | 1,000               | 5,100           | 21,000          | 100                              | 430              |  |
| Chloromethane (methyl chloride)          | 74-87-3   | 240                 | 4,700           | 20,000          | 94                               | 390              |  |
| Cyclohexane                              | 110-82-7  | 16,000 <sup>a</sup> | 310,000         | 1,300,000       | 6,300                            | 26,000           |  |
| Dibromochloromethane                     | 124-48-1  | -                   | -               | -               | -                                | -                |  |
| 1,2-Dibromoethane (ethylene dibromide)   | 106-93-4  | 0.45                | 15 <sup>b</sup> | 15 <sup>b</sup> | 1.5 <sup>b</sup>                 | 1.5 <sup>b</sup> |  |
| 1,2-Dichlorobenzene (o)                  | 95-50-1   | 6,800               | 10,000          | 44,000          | 210                              | 880              |  |
| 1,4-Dichlorobenzene (p)                  | 106-46-7  | 21,000              | 42,000          | 180,000         | 830                              | 3,500            |  |
| Dichlorodifluoromethane (Freon 12)       | 75-71-8   |                     | -               | -               | -                                | -                |  |
| 1,1-Dichloroethane                       | 75-34-3   | -                   | -               | -               | -                                | -                |  |
| 1,2-Dichloroethane                       | 107-06-2  | 230                 | 360             | 1500            | 7.3                              | 31               |  |
| 1,1-Dichloroethene                       | 75-35-4   | 26                  | 1,000           | 4,400           | 21                               | 88               |  |
| 1,2-Dichloroethene (cis)                 | 156-59-2  |                     | -               | -               | -                                |                  |  |
| 1,2-Dichloroethene (trans)               | 156-60-5  |                     |                 |                 |                                  |                  |  |
| 1,2-Dichloropropane                      | 78-87-5   | 11                  | 38              | 170             | 0.92 <sup>b</sup>                | 3.3              |  |
| 1,3-Dichloropropene (total) <sup>d</sup> | 542-75-6  | 8.4                 | 35              | 150             | 0.91 <sup>b</sup>                | 3.1              |  |
| 1,4-Dioxane                              | 123-91-1  | 2,500               | 28              | 120             | 0.72 <sup>b</sup>                | 2.5              |  |
| Ethylbenzene                             | 100-41-4  | 700 <sup>a,c</sup>  | 56              | 250             | 1.1                              | 4.9              |  |
| Hexachlorobutadiene                      | 87-68-3   |                     |                 |                 |                                  | -                |  |
| n-Hexane                                 | 110-54-3  | 160 <sup>a</sup>    | 36,000          | 150,000         | 730                              | 3,100            |  |
| Mercury, elemental                       | 7439-97-6 | -<br>-              | - <sup>e</sup>  | _°              | 1 <sup>b</sup>                   | 1.3              |  |
| Methylene chloride (dichloromethane)     | 75-09-2   | 2,600               | 14,000          | 61,000          | 280                              | 1,200            |  |





#### Comparison of 2013 and 2021 Rapid Action Levels

|                                        | Residential Rapi | d Action Levels           | Nonresidential Rapid Action Levels |                           |                           |
|----------------------------------------|------------------|---------------------------|------------------------------------|---------------------------|---------------------------|
|                                        | CAS No.          | 2013                      | 2021                               | 2013                      | 2021                      |
| Chemical                               |                  | μ <i>g/m</i> <sup>3</sup> | μ <i>g/m</i> <sup>3</sup>          | μ <i>g/m</i> <sup>3</sup> | μ <i>g/m</i> <sup>3</sup> |
| Acetone (2-propanone)                  | 67-64-1          | 64,000                    | -                                  | 280,000                   | _                         |
| Benzene                                | 71-43-2          | 30                        | 36                                 | 200                       | 160                       |
| Bromodichloromethane                   | 75-27-4          | 7                         | -                                  | 30                        | -                         |
| Bromoethene (vinyl bromide)            | 593-60-2         | 6                         | -                                  | 26                        | -                         |
| Bromoform                              | 75-25-2          | 200                       | -                                  | 1,100                     |                           |
| Bromomethane (methyl bromide)          | 74-83-9          | 10                        | 10                                 | 44                        | 44                        |
| 1,3-Butadiene                          | 106-99-0         | 4                         | -                                  | 18                        | -                         |
| 2-Butanone (methyl ethyl ketone)       | 78-93-3          | 10,000                    | 10,000                             | 44,000                    | 44,000                    |
| Carbon disulfide                       | 75-15-0          | 1,500                     | 1,500                              | 6,200                     | 6,200                     |
| Carbon tetrachloride                   | 56-23-5          | 40                        | 47                                 | 200                       | 200                       |
| Chlorobenzene                          | 108-90-7         | 100                       | 100                                | 440                       | 440                       |
| Chloroethane (ethyl chloride)          | 75-00-3          | 20,000                    | 20,000                             | 88,000                    | 88,000                    |
| Chloroform                             | 67-66-3          | 10                        | 200                                | 50                        | 860                       |
| Chloromethane (methyl chloride)        | 74-87-3          | 190                       | 190                                | 780                       | 780                       |
| 3-Chloropropene (allyl chloride)       | 107-05-1         | 2                         | -                                  | 8                         | -                         |
| Cyclohexane                            | 110-82-7         | 13,000                    | 13,000                             | 52,000                    | 52,000                    |
| Dibromochloromethane                   | 124-48-1         | 9                         | -                                  | 50                        | -                         |
| 1,2-Dibromoethane (ethylene dibromide) | 106-93-4         | 4                         | 1.5                                | 4                         | 2.0                       |
| 1,2-Dichlorobenzene (o)                | 95-50-1          | 420                       | 420                                | 1,800                     | 1,800                     |
| 1,4-Dichlorobenzene (p)                | 106-46-7         | 20                        | 1,700                              | 100                       | 7,000                     |
| Dichlorodifluoromethane (Freon 12)     | 75-71-8          | 200                       | -                                  | 880                       | -                         |
| 1,1-Dichloroethane                     | 75-34-3          | 200                       | -                                  | 800                       | -                         |
| 1,2-Dichloroethane                     | 107-06-2         | 9                         | 15                                 | 50                        | 62                        |
| 1,1-Dichloroethene                     | 75-35-4          | 420                       | 42                                 | 1,800                     | 180                       |
| 1,2-Dichloroethene (trans)             | 156-60-5         | 130                       | -                                  | 520                       | -                         |
| 1,2-Dichloropropane                    | 78-87-5          | 8                         | 8.4                                | 36                        | 36                        |

| Residential    | <b>Residential RAL</b> |  |  |  |  |
|----------------|------------------------|--|--|--|--|
| RAL Increasing | 12                     |  |  |  |  |
| RAL Decreasing | 3                      |  |  |  |  |
| RAL the Same   | 18                     |  |  |  |  |
| RAL Added      | 2                      |  |  |  |  |
| RAL Removed    | 14                     |  |  |  |  |

| Nonresidentia  | Nonresidential RAL |  |  |  |  |
|----------------|--------------------|--|--|--|--|
| RAL Increasing | 4                  |  |  |  |  |
| RAL Decreasing | 6                  |  |  |  |  |
| RAL the Same   | 23                 |  |  |  |  |
| RAL Added      | 2                  |  |  |  |  |
| RAL Removed    | 14                 |  |  |  |  |

### Ground Water Screening Levels (GWSL) Updates

- Revised NJDEP J&E Spreadsheets
  - Updated toxicity information
  - Updated chemical properties information
  - Updated exposure duration for residential land use (30 to 26 yrs)
  - Ground water temperature of 13°C and default sandy soil texture unchanged





#### Ground Water Screening Levels (GWSL) Updates

- Adjustments for hydrocarbon degradation:
  - Benzene, cyclohexane, ethylbenzene, n-hexane, naphthalene, styrene, toluene, 1,2,4-trimethylbenzene, and xylene
- GWSL is the higher of the calculated health-based value and Ground Water Remediation Standard





#### Ground Water Screening Levels (GWSL) Updates

| <b>GWSL Increasing</b> | 12 |
|------------------------|----|
| <b>GWSL Decreasing</b> | 2  |
| GWSL the Same          | 18 |
| GWSL Added             | 2  |
| <b>GWSL Deleted</b>    | 14 |

• GWSL for 1,1-Dichloroethene (order of magnitude (OOM)) and xylenes are decreasing





## Soil Gas Screening Levels (SGSL) Updates

The equation used to derive SGSLs has not changed

*Health*-based Screening Value 
$$\left(\frac{\mu g}{m^3}\right)$$
 = Health-based Indoor Air Value  $\left(\frac{\mu g}{m^3}\right)/\alpha$ 

- Attenuation factor ( $\alpha$ ) = 0.02
- Resultant SGSL is the higher of the health-based screening value or the analytical RL





### Soil Gas Screening Levels (SGSL) Updates

| <b>Residential SGSL</b> |    |  |  |
|-------------------------|----|--|--|
| SGSL Increasing         | 12 |  |  |
| SGSL Decreasing         | 4  |  |  |
| SGSL the Same           | 16 |  |  |
| SGSL Added              | 2  |  |  |
| SGSL Deleted            | 14 |  |  |

| Nonresidential SGSL    |    |  |
|------------------------|----|--|
| SGSL Increasing        | 4  |  |
| <b>SGSL Decreasing</b> | 3  |  |
| SGSL the Same          | 25 |  |
| SGSL Added             | 2  |  |
| SGSL Deleted           | 14 |  |

- SGSL for 1,1-Dichloroethene are decreasing by an OOM
- 1,2-dibromoethane, 1,1,2-trichloro-1,2,2-trifluoroethane, and carbon tetrachloride (residential only) also decreasing



### **Indoor Air Rapid Action Levels (RAL) Updates**

- The calculations used to derive RAL have not changed
  - A factor of 100 applied to the carcinogenic indoor air human health-based criteria
  - A factor of 2 applied to the non-carcinogenic indoor air human health-based criteria
- Resultant RALs are the lesser of the carcinogenic and non-carcinogenic values, or the higher analytical RL





#### Rapid Action Levels (RAL) for Indoor Air Updates

| <b>Residential RAL</b> |    |  |  |
|------------------------|----|--|--|
| RAL Increasing         | 12 |  |  |
| RAL Decreasing         | 3  |  |  |
| RAL the Same           | 18 |  |  |
| RAL Added              | 2  |  |  |
| RAL Deleted            | 14 |  |  |

| Nonresidential RAL |    |  |  |
|--------------------|----|--|--|
| RAL Increasing     |    |  |  |
| RAL Decreasing     | 6  |  |  |
| RAL the Same       | 23 |  |  |
| RAL Added          | 2  |  |  |
| RAL Deleted        | 14 |  |  |





### Rapid Action Levels (RAL) for Indoor Air Updates

- RAL for 1,1-Dichloroethene is decreasing by an OOM
- RAL for 1,2-dibromoethane and 1,1,2-trichloro-1,2,2trifluoroethane are decreasing for both land use types
- Nonresidential RALs for benzene, ethylbenzene, and vinyl chloride are decreasing due to significant figures





#### **Phase-In of New VISL**

- Phase in for VISL will be consistent with that for the IARS
- All new cases shall use the new VISL and IARS
- Sites/AOCs with NJDEP approved or LSRP certified RAWP/RAR by May 17<sup>th</sup> may be remediated using prior VISL, except for 1,1-dichloroethene



#### **Phase-In of New VISL**

- Sites/AOCs with NJDEP approved or LSRP certified RAWP/RAR within 6 months of effective date of the new IARS/VISL (November 17<sup>th</sup>) can be remediated using prior VISL, except for 1,1-dichloroethene
  - Report should state which version of VISL and IARS are being used
- Sites/AOCs with final remediation document, no additional action required, except for 1,1-dichloroethene





### Additional Information on Vapor Intrusion Screening Levels

- Vapor Intrusion Screening Levels, Basis and Background <a href="https://www.nj.gov/dep/srp/guidance/vaporintrusion/">https://www.nj.gov/dep/srp/guidance/vaporintrusion/</a>
- Vapor Intrusion Exposure Pathway Calculator
   <a href="https://www.nj.gov/dep/srp/guidance/rs/index.html">https://www.nj.gov/dep/srp/guidance/rs/index.html</a>





# Derivation of Alternative Remediation Standards (ARS) for Indoor Air for the Vapor Intrusion Exposure Pathway



- The Brownfield and Contaminated Site Remediation Act (N.J.S.A. 58:10B-12.f(1)) requires the Department to consider **site-specific** factors in determining an ARS
- Site-specific factors may vary from those used by the Department in the development of the default IARS pursuant to N.J.A.C. 7:26D Appendix 9





- All ARS for indoor air require pre-approval from the Department prior to use
- Institutional control and Remedial Action Permit required
- Engineering control may be required





- Not an option for residential buildings, schools, or child care facilities
- Option for nonresidential buildings where exposures are not consistent with exposure assumptions used to develop the default health-based IARS





- Examples where site-specific modification of exposure parameters may be acceptable:
  - A small generating station
  - An isolated storage facility
  - A restricted access area of nonresidential building
  - An adjustment of workday hours (differ from 8 hrs/day)





# **Exposure Factors That <u>Can</u> be Changed when Developing an ARS for Indoor Air**

- Exposure Frequency (days/year)
- Exposure Time (hours/day)





#### **Exposure Factors That <u>Cannot</u> be Changed when Developing an ARS for Indoor Air**

• Exposure Duration (years)





#### **Chemical-Specific Toxicity**

- Inhalation Unit Risk (IUR) factors and noncancer reference concentrations (RfC) cannot be changed via the ARS process
  - For chemicals with no existing IARS, interim IARS may be developed in accordance with 7:26D-6
  - Toxicity values for contaminants with an existing IARS may be updated in accordance with 7:26D-7





#### **Site-Specific Exposure Factor Adjustments**

- Modification of the exposure factors (ET and/or EF) must reflect the Reasonable Maximum Exposure (RME) associated with site-specific use of the nonresidential building
- RME is defined as "the highest exposure that is reasonably expected to occur at a site"





#### **Site-Specific Exposure Factor Adjustments**

- When determining the RME, potential exposure assumptions to consider include:
  - Current and future use of the building
  - Time spent in building by all receptors (e.g., office workers, maintenance workers, etc.)
  - Engineering controls to restrict access





#### **Calculation of ARS for Indoor Air**

- Vapor Intrusion Exposure Pathway Calculator accessible on the Remediation Standards website <u>NJDEP SRP -</u> <u>Guidance: Remediation Standards (state.nj.us)</u>
  - Site-specific parameters that may be adjusted are unlocked
  - Input parameters which may not be adjusted are locked
  - Calculator also calculates SGSL and RAL consistent with ARS for indoor air exposure assumptions





#### **Calculation of ARS for Indoor Air**

- Both carcinogenic and non-carcinogenic health endpoints are applicable
- ARS for indoor air based on the lower of the carcinogenic and non-carcinogenic indoor air human health-based criteria, or analytical RL if higher





#### Calculators

The Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator

Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator (Version 1.0 May 2021)

#### This includes the following calculators:

- Soil-Water Partition Equation Calculator
- Synthetic Precipitation Leaching Procedure Calculator
- Dilution-Attenuation Factor Calculator
- Fraction Organic Carbon Calculator

Soil Ingestion-Dermal Exposure Pathway Calculator

Soil Ingestion-Dermal Exposure Pathway Calculator (Version 1.0 May 2021)

#### Soil Inhalation Exposure Pathway Calculator

Soil Inhalation Exposure Pathway Calculator (Version 1.0 May 2021)

#### Vapor Intrusion Exposure Pathway Calculator

<u>Vapor Intrusion Exposure Pathway Calculator</u> (Version 1.0 May 2021)

The Extractable Petroleum Hydrocarbon Ingestion-Dermal Exposure Pathway Calculator:

<u>Extractable Petroleum Hydrocarbon Ingestion-Dermal Exposure Pathway Calculator</u> (Version 1.0 May 2021)

This includes the following calculators:

- Category 2 Sample-Specific Residential
- Category 2 Sample-Specific Non-Residential
- Category 1 and 2 Alternative Remediation Standards for Soil (based on Land Use Exposure Scenarios)



#### **Vapor Intrusion Exposure Pathway Calculator**

| NJDEP Calculator     | ×                                         |
|----------------------|-------------------------------------------|
| VAPOR INTRUS         | SITE-SPECIFIC<br>ION STANDARDS<br>RITERIA |
| Residential Scenario | Nonresidential Scenario                   |
|                      | Exit                                      |





#### Vapor Intrusion Exposure Pathway Calculator

| NJ               | DEP 2021 Vapor Intr                                         |                                    |                     |                               | s and Rap     | id Action Le                 | vel  |
|------------------|-------------------------------------------------------------|------------------------------------|---------------------|-------------------------------|---------------|------------------------------|------|
| Calculator       |                                                             |                                    |                     |                               |               |                              |      |
| Site N           | Name:                                                       |                                    |                     |                               |               | Date:                        |      |
| Contar           | minant: Benzene                                             |                                    |                     | <b>•</b>                      | CAS No.:      | 71-43                        | -2   |
|                  |                                                             |                                    |                     |                               | Evaluated by: |                              |      |
| $IA_c = -$       | TR * AT *                                                   | LT                                 | _                   | THQ                           | * AT * ED :   | $*\frac{1000 \ \mu g}{max}$  |      |
| E                | $EF * ED * ET * \frac{1}{24}$                               | day * IUR                          | IA "                | $c = \frac{EF * ED}{EF * ED}$ | + FT + 1      | mg<br>day 1                  |      |
|                  | 24                                                          | hours                              |                     | EF * ED                       | * EI * 24     | hours * RfC                  |      |
| $SL_{m} = Low$   | ver of cancer and                                           | IA                                 | RAL = Lc            | wer of                        | Air Reporting | Limit (µg/m <sup>3</sup> ) = | 0.64 |
|                  | oncancer SL SGSL                                            | $=\frac{IA}{0.02}$                 | $100 * IA_c o$      |                               | Soil Gas Rep  | orting Limit =               | 6.4  |
| Parameter        | Definition                                                  | Units                              | Default<br>Scenario | Alternative<br>Scenario       |               |                              |      |
| TR               | Target Cancer Risk                                          | unitless                           | 1.00E-06            | 1.00E-06                      |               |                              |      |
| THQ              | Target Hazard Quotient                                      | unitless                           | 1                   | 1                             |               |                              |      |
| AT               | Averaging Time                                              | days/year                          | 365                 | 365                           |               |                              |      |
| LT               | Lifetime<br>Nonresidential Exposure                         | years                              | 70                  | 70                            |               | •                            |      |
| EF               | Frequency                                                   | days/year                          | 250                 | 250 🦰                         |               |                              |      |
| ED               | Nonresidential Exposure<br>Duration                         | years                              | 25                  | 25                            |               |                              |      |
| ET               | Nonresidential Exposure Time                                | hours/day                          | 8                   | 8 🎽                           |               |                              |      |
| IUR              | Inhalation Unit Risk                                        | (µg/m <sup>3</sup> ) <sup>-1</sup> | 7.80E-06            | 7.80E-06                      |               |                              |      |
| RfC              | Inhalation Reference<br>Concentration                       | mg/m <sup>3</sup>                  | 0.03                | 0.03                          |               |                              |      |
| IAc              | Carcinogenic Indoor Air Human<br>Health-Based Criterion     | µg/m <sup>3</sup>                  | 1.6                 | 1.6                           |               |                              |      |
| IA <sub>nc</sub> | Non-carcinogenic Indoor Air<br>Human Health-Based Criterion | µg/m³                              | 130                 | 130                           |               |                              |      |
| IA               | Indoor Air Human Health-Based<br>Criterion                  | µg/m³                              | 1.6                 | 1.6                           |               |                              |      |
| SGSL             | Human Health-Based Soil Gas<br>Screening Criterion          | µg/m³                              | 79                  | 79                            |               |                              |      |
| RAL              | Human Health-Based Rapid<br>Action Criterion                | µg/m³                              | 160                 | 160                           |               | •                            |      |
|                  |                                                             |                                    |                     |                               |               |                              |      |
| Alternati        | ve Nonresidential Ind                                       | oor Air Stan                       | dard:               | 1.6 🖊                         | µg/m³         | Cancer-bas                   | ed   |
|                  |                                                             |                                    |                     |                               | - 3           |                              |      |
| Alternativ       | ve Nonresidential Soil C                                    | Sas Screening                      | g Level:            | 79                            | µg/m³         |                              |      |
| Alternati        | ve Nonresidential Ra                                        | pid Action Le                      | evel:               | 160                           | µg/m³         | Cancer-bas                   | ed   |

**Default exposure** frequency = 250 days

**Default exposure** time = 8 hours

172



#### **Vapor Intrusion Exposure Pathway Calculator**

| NJE               | DEP 2021 Vapor Int                                                                                                                                               |                                    |                           |                           | s and Rap                          | id Action Level                                          | ٦      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|---------------------------|------------------------------------|----------------------------------------------------------|--------|
| Calculator        |                                                                                                                                                                  |                                    |                           |                           |                                    |                                                          |        |
| Site N            | lame:                                                                                                                                                            |                                    |                           |                           |                                    | Date:                                                    |        |
| Contan            | ninant: Benzene                                                                                                                                                  |                                    |                           | -                         | CAS No.:                           | 71-43-2                                                  |        |
|                   |                                                                                                                                                                  |                                    |                           |                           | Evaluated by:                      |                                                          |        |
| $IA_{c} = -$<br>E | $\frac{TR * AT *}{F * ED * ET * \frac{1}{24}}$                                                                                                                   |                                    | - IA ,                    | $c = \frac{THQ}{EF * ED}$ | * AT * ED<br>$* ET * \frac{1}{24}$ | $\frac{1000 \ \mu g}{mg}}{\frac{day}{mg}} + \frac{1}{2}$ |        |
|                   |                                                                                                                                                                  |                                    |                           |                           |                                    |                                                          |        |
|                   | er of cancer and<br>ncancer SL SGS                                                                                                                               | $L = \frac{IA}{0.02}$              | $RAL = Lo$ $100 * IA_c o$ | · · · ·                   | <u> </u>                           | Limit (µg/m <sup>3</sup> ) = 0.64<br>porting Limit = 6.4 | $\neg$ |
| Parameter         | Definition                                                                                                                                                       | Units                              | Default<br>Scenario       | Alternative<br>Scenario   |                                    |                                                          |        |
| TR                | Target Cancer Risk                                                                                                                                               | unitless                           | 1.00E-06                  | 1.00E-06                  |                                    |                                                          |        |
| THQ               | Target Hazard Quotient                                                                                                                                           | unitless                           | 1                         | 1                         |                                    |                                                          |        |
| AT                | Averaging Time                                                                                                                                                   | days/year                          | 365                       | 365                       |                                    |                                                          |        |
| LT                | Lifetime                                                                                                                                                         | years                              | 70                        | 70                        |                                    |                                                          |        |
| EF                | Nonresidential Exposure<br>Frequency                                                                                                                             | days/year                          | 250                       | 250                       |                                    |                                                          |        |
| ED                | Nonresidential Exposure<br>Duration                                                                                                                              | years                              | 25                        | 25                        |                                    |                                                          |        |
| ET                | Nonresidential Exposure Tim                                                                                                                                      | e hours/day                        | 8                         | 4 🗡                       | changed                            |                                                          |        |
| IUR               | Inhalation Unit Risk                                                                                                                                             | (µg/m <sup>3</sup> ) <sup>-1</sup> | 7.80E-06                  | 7.80E-06                  |                                    |                                                          |        |
| RfC               | Inhalation Reference<br>Concentration                                                                                                                            | mg/m <sup>3</sup>                  | 0.03                      | 0.03                      |                                    |                                                          |        |
| IAc               | Carcinogenic Indoor Air Huma<br>Health-Based Criterion                                                                                                           | an µg/m <sup>3</sup>               | 1.6                       | 3.1                       |                                    |                                                          |        |
| IA <sub>nc</sub>  | Non-carcinogenic Indoor Air<br>Human Health-Based Criterio                                                                                                       | 110/000                            | 130                       | 260                       |                                    |                                                          |        |
| IA                | Indoor Air Human Health-Base<br>Criterion                                                                                                                        | ed µg/m <sup>3</sup>               | 1.6                       | 3.1                       |                                    |                                                          |        |
| SGSL              | Human Health-Based Soil Ga<br>Screening Criterion                                                                                                                | s μg/m <sup>3</sup>                | 79                        | 160                       | 1                                  |                                                          |        |
| RAL               | Human Health-Based Rapid<br>Action Criterion                                                                                                                     | µg/m <sup>3</sup>                  | 160                       | 310                       |                                    |                                                          |        |
| Altornatio        |                                                                                                                                                                  | door Air Stan                      | dard:                     | 3.1                       |                                    | Cancer-based                                             |        |
|                   | Alternative Nonresidential Indoor Air Standard: 3.1 μg/m <sup>3</sup> Cancer-based<br>Alternative Nonresidential Soil Gas Screening Level: 160 μg/m <sup>3</sup> |                                    |                           |                           |                                    |                                                          |        |
| Alternativ        | ve Nonresidential R                                                                                                                                              | apid Action Lo                     | evel:                     | 310                       | µg/m³                              | Cancer-based                                             |        |

ARS for indoor air exposure time = 4 hours

173



#### **Submittal of an ARS for Indoor Air Application**

- LSRP must complete *Alternative or Interim Remediation Standard and/or Screening Level Application Form* and *Remediation Standard Notification Spreadsheet*
- The form, spreadsheet, and instructions for both can be found under "General Forms" in the Forms Library

<u>NJDEP SRP - Site Remediation Reform Act (SRRA): Forms</u> (state.nj.us)



### **Submittal of an ARS for Indoor Air Application**

- Pursuant to 7:26D Appendix 9, the following is required to be submitted with the form and spreadsheet:
  - ARS calculations using the Department's calculator
  - Description of justification of site-specific exposure factors
  - Institutional controls, engineering controls (as needed), and proposed monitoring





### **Submittal of an ARS for Indoor Air Application**

- Overview of the history and contamination at site or AOC
  - Description of VI investigations related to ARS for indoor air
  - Extent of VI related soil and ground water contamination
  - Summary table of analytical results
  - Description of subject building with scaled map of site and surrounding area
  - Uses in the subject building and locations where receptors are present





# **Derivation of Alternative Vapor Intrusion Screening Levels**





## Alternative Ground Water Screening Levels (GWSL)

#### • Alternative GWSL Options have not changed

- Applicable to residential and nonresidential buildings

   Exposure factors for residential scenario required
- May be developed based on site-specific soil texture and depth to ground water





### Alternative Ground Water Screening Levels (GWSL) Options

#### Option 1: Alternate Soil Textures

- Table 3 of the Vapor Intrusion Screening Levels and Indoor Air Remediation Standards Tables list GWSL for alternate soil texture types
  - Available for loamy sand, sandy loam, and loam soil
- Use of the Table 3 alternative GWSL requires the determination of site-specific soil texture as described in Appendix G of the VIT Guidance.





#### TABLE 3 NJDEP GROUND WATER SCREENING LEVELS FOR ALTERNATE SOIL TEXTURES

| Chemical                                            | CAS No.  | LOAMY SAND:<br>Ground Water<br>Screening Levels<br>(µg/L) | SANDY LOAM:<br>Ground Water<br>Screening Levels<br>(µg/L) | LOAM:<br>Ground Water<br>Screening Levels<br>(µg/L) |
|-----------------------------------------------------|----------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|
| Acetone (2-Propanone)                               | 67-64-1  | -                                                         | -                                                         | -                                                   |
| Benzene                                             | 71-43-2  | 51 <sup>a</sup>                                           | 120 <sup>a</sup>                                          | 190 <sup>a</sup>                                    |
| Bromodichloromethane (Dichlorobromomethane)         | 75-27-4  | -                                                         | -                                                         | -                                                   |
| Bromoform                                           | 75-25-2  | -                                                         | -                                                         | -                                                   |
| Bromomethane (Methyl bromide)                       | 74-83-9  | 43                                                        | 110                                                       | 160                                                 |
| 2-Butanone (Methyl ethyl ketone) (MEK)              | 78-93-3  | 2,700,000                                                 | 3,100,000                                                 | 3,900,000                                           |
| Carbon disulfide                                    | 75-15-0  | 3,200                                                     | 8,100                                                     | 12,000                                              |
| Carbon tetrachloride                                | 56-23-5  | 2.0                                                       | 5.3                                                       | 8.3                                                 |
| Chlorobenzene                                       | 108-90-7 | 1,700                                                     | 3,800                                                     | 5,800                                               |
| Chloroethane (Ethyl chloride)                       | 75-00-3  | 57,000                                                    | 140,000                                                   | 220,000                                             |
| Chloroform                                          | 67-66-3  | 2,300                                                     | 5,400                                                     | 8,100                                               |
| Chloromethane (Methyl chloride)                     | 74-87-3  | 510                                                       | 1,300                                                     | 1,900                                               |
| Cyclohexane                                         | 110-82-7 | 37,000 <sup>a</sup>                                       | _ <sup>a,b</sup>                                          | _a,b                                                |
| Dibromochloromethane (Chlorodibromomethane)         | 124-48-1 | -                                                         | -                                                         | -                                                   |
| 1,2-Dibromoethane (Ethylene dibromide)              | 106-93-4 | 0.73                                                      | 1.1                                                       | 1.5                                                 |
| 1,2-Dichlorobenzene (o-Dichlorobenzene)             | 95-50-1  | 14,000                                                    | 28,000                                                    | 41,000                                              |
| 1,4-Dichlorobenzene (p-Dichlorobenzene)             | 106-46-7 | 47,000                                                    | _ <sup>b</sup>                                            | b                                                   |
| Dichlorodifluoromethane (Freon 12)                  | 75-71-8  | -                                                         | -                                                         | -                                                   |
| 1,1-Dichloroethane                                  | 75-34-3  | -                                                         | -                                                         | -                                                   |
| 1,2-Dichloroethane                                  | 107-06-2 | 440                                                       | 850                                                       | 1,200                                               |
| 1,1-Dichloroethene (1,1-Dichloroethylene)           | 75-35-4  | 59                                                        | 160                                                       | 240                                                 |
| 1,2-Dichloroethene (cis) (c-1,2-Dichloroethylene)   | 156-59-2 | -                                                         | -                                                         | -                                                   |
| 1,2-Dichloroethene (trans) (t-1,2-Dichloroethylene) | 156-60-5 | -                                                         | -                                                         | -                                                   |
| 1,2-Dichloropropane                                 | 78-87-5  | 25                                                        | 55                                                        | 83                                                  |

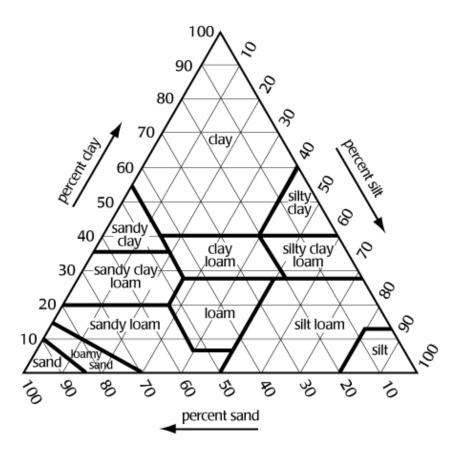




180

## Alternative Ground Water Screening Levels (GWSL) Options

- NJDEP J&E Spreadsheets may be used to develop alternative GWSL using soil textures other than those used in Tables 1 and 3 of VISL and IARS Tables
  - Alternative GWSL requires determination of site-specific soil texture
- Updated NJDEP J&E Spreadsheets and instructions can be found at:


https://www.nj.gov/dep/srp/guidance/vaporintrusion/njje.htm





## **Determining Soil Texture**

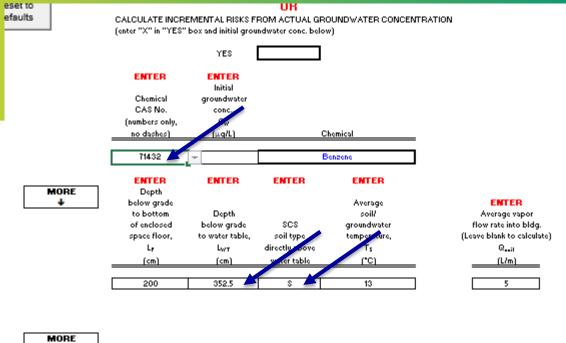
- Collect soil core(s)
- Soil samples submitted to laboratory for texture analysis
- Textures assigned using USDA soil triangle



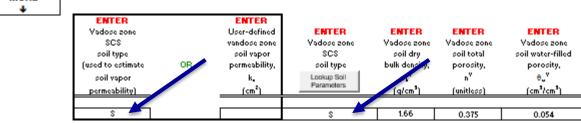
182



## Alternative Ground Water Screening Levels (GWSL) Options


### Option 2: Modifying the Depth to Ground Water

 Enter the depth of the water table (soil surface to water table) on either the screening or advanced New Jersey J&E
 Spreadsheets, which can be found at:


https://www.nj.gov/dep/srp/guidance/vaporintrusion/njje.htm

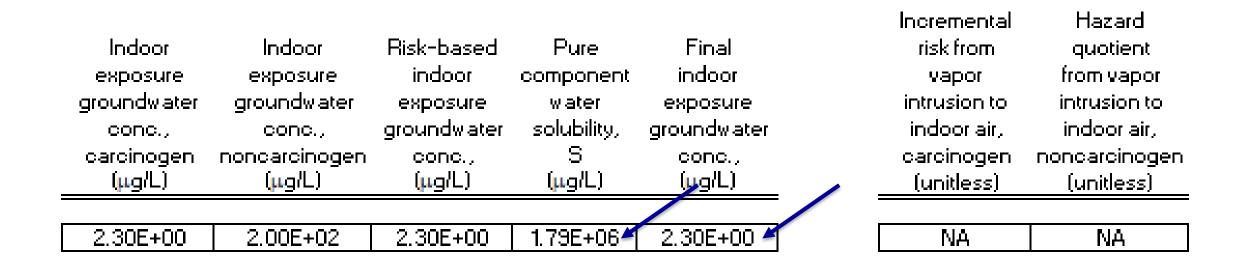






| CHICK        | CRICK           | CRICK          | CHICK        |
|--------------|-----------------|----------------|--------------|
| Depth        |                 |                |              |
| below grade  |                 |                | Average      |
| to bottom    | Depth           |                | soil/        |
| of enclosed  | below grade     | SCS            | groundwater  |
| space floor, | to water table, | soil type      | temperature, |
| Lp           | Lwr             | directly above | Ts           |
| (cm)         | (cm)            | water table    | <u>("C)</u>  |
|              |                 |                |              |
| 200          | 352.5 🗡         | S 🖌            | 13           |




| risk for     | quotient for    | time for     | time for         | Exposure  | Exposure   |
|--------------|-----------------|--------------|------------------|-----------|------------|
| carcinogens, | noncarcinogens, | carcinogens, | noncarcinogens,  | duration, | frequency, |
| TR           | THQ             | ATc          | AT <sub>HC</sub> | ED        | EF         |
| (unitless)   | (unitless)      | (vrs)        | (vrs)            | (vrs)     | (days/yr)  |
| 1.0E-06      | 1               | 70           | 26               | 26        | 350        |



### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

### INCREMENTAL RISK CALCULATIONS:

185



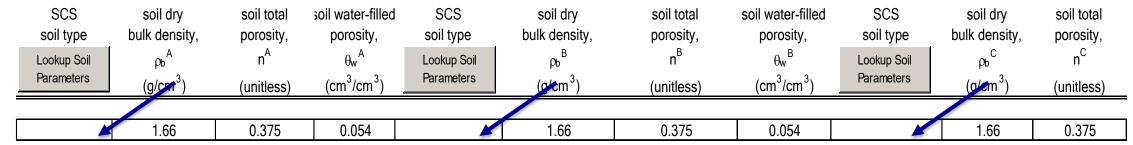
- Apply a factor of 10 for chemicals with known hydrocarbon degradation
- Final GWSL based on the higher of the health-based groundwater criterion and GWRS



## Alternative Ground Water Screening Levels (GWSL) Options

### • Option 3: Soil Texture Layers

 Requires the use of the New Jersey advanced J&E Spreadsheet, which can be found at:


https://www.nj.gov/dep/srp/guidance/vaporintrusion/njje.htm

- Layers must be continuous across the site and may not be fractured, as demonstrated by soil borings
- Enter the thickness of each soil layer (max. 3) in the advanced
   J&E and select built-in soil properties for each layer

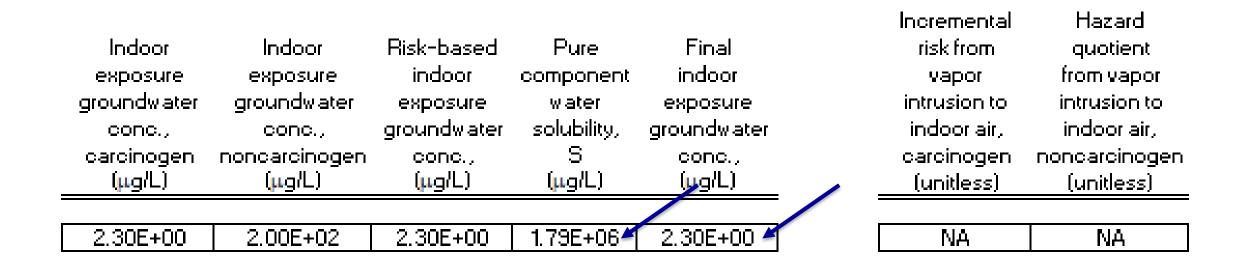




#### **ENTER ENTER** ENTER ENTER **ENTER** ENTER **ENTER** ENTER **ENTER** ENTER Totals must add up to value of L WT (cell G28) Soil Depth below grade Thickness Thickness User-defined Average stratum A soil/ SCS to bottom Thickness of soil of soil Soil Depth stratum A SCS of soil groundwater of enclosed below grade stratum B. stratum C. stratum soil type soil vapor (Enter value or 0) (Enter value or 0) OR permeability, soil type (used to estimate temperature, space floor, to water table, stratum A, directly above Ts hc directly above soil vapor LF Lwt hA hB water table. kν $(cm^2)$ (°C) (Enter A, B, or C) water table permeability) cm) (cm) (cm) (cm) (cr 352.5 50 50 13 200 252.5 С S S ENTER **ENTER ENTER ENTER ENTER ENTER** ENTER ENTER **ENTER** ENTER ENTER Stratum A Stratum A Stratum A Stratum A Stratum B Stratum B Stratum B Stratum B Stratum C Stratum C Stratum C



-


187



### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

### INCREMENTAL RISK CALCULATIONS:

188



- Apply a factor of 10 for chemicals with known hydrocarbon degradation
- Final GWSL based on the higher of the health-based groundwater criterion and GWRS



## **Alternative Soil Gas Screening Levels (SGSL)**

- Applicable to nonresidential buildings only
- Alternative SGSL may be developed using an ARS for indoor air that has been approved by the Department
- Department's Vapor Intrusion Exposure Pathway calculator will calculate alternative SGSL

Alternative SGSL = ARS for indoor air health-based value/0.02





## Alternative Rapid Action Levels (RAL) for Indoor Air

- Applicable to nonresidential buildings only
- Alternative RAL may be developed using an ARS for indoor air that has been approved by the Department



## Alternative Rapid Action Levels (RAL) for Indoor Air

- Department's Vapor Intrusion Exposure Pathway calculator will calculate alternative RAL
  - 100X the carcinogenic ARS for indoor air health-based criterion
  - 2X the non-carcinogenic ARS for indoor air health-based criterion
  - Alternative RAL lesser of carcinogenic and non-carcinogenic health-based values or analytical RL





| Site N                                                 | lame:                                                   |                                    |                                              |                     |                                  |                                                 | Date:       |     |
|--------------------------------------------------------|---------------------------------------------------------|------------------------------------|----------------------------------------------|---------------------|----------------------------------|-------------------------------------------------|-------------|-----|
| Contaminant: Benzene                                   |                                                         |                                    |                                              | <b>T</b>            |                                  | CAS No.:<br>Evaluated by:                       |             |     |
| $IA_c = -\frac{1}{E}$                                  | $F * ED * ET * \frac{1}{2}$                             |                                    | /R                                           | IA "                | $f = \frac{THQ}{EF * ED}$        | $* AT * ED *$ $* ET * \frac{1}{24} \frac{1}{h}$ | day * 1     |     |
| $SL_{nr}$ = Lower of cancer and<br>noncancer SL $SGSL$ |                                                         | $SL = \frac{IA}{0.02}$             | $RAL = Lower of$ $100 * IA_c or 2 * IA_{nc}$ |                     | Air Reporting I<br>Soil Gas Repo |                                                 | 0.64<br>6.4 |     |
| Parameter                                              | Definition                                              | Units                              |                                              | Default<br>Scenario | Alternative<br>Scenario          |                                                 |             |     |
| TR                                                     | Target Cancer Risk                                      | unitless                           |                                              | 1.00E-06            | 1.00E-06                         | 1                                               |             |     |
| THQ                                                    | Target Hazard Quotient                                  | unitless                           |                                              | 1                   | 1                                |                                                 |             |     |
| AT                                                     | Averaging Time                                          | days/year                          |                                              | 365                 | 365                              |                                                 |             |     |
| LT                                                     | Lifetime<br>Nonresidential Exposure                     | years                              |                                              | 70                  | 70                               |                                                 |             |     |
| EF                                                     | Frequency                                               | days/year                          |                                              | 250                 | 250                              |                                                 |             |     |
| ED                                                     | Nonresidential Exposure<br>Duration                     | years                              |                                              | 25                  | 25                               |                                                 |             |     |
| ET                                                     | Nonresidential Exposure Tin                             | ne hours/day                       |                                              | 8                   | 4 🗡                              | changed                                         |             |     |
| IUR                                                    | Inhalation Unit Risk                                    | (µg/m <sup>3</sup> ) <sup>-1</sup> |                                              | 7.80E-06            | 7.80E-06                         |                                                 |             |     |
| RfC                                                    | Inhalation Reference<br>Concentration                   | mg/m <sup>3</sup>                  |                                              | 0.03                | 0.03                             |                                                 |             |     |
| IA <sub>c</sub>                                        | Carcinogenic Indoor Air Hum<br>Health-Based Criterion   | µg/m°                              |                                              | 1.6                 | 3.1                              |                                                 |             |     |
| IA <sub>nc</sub>                                       | Non-carcinogenic Indoor A<br>Human Health-Based Criteri | ua/m <sup>o</sup>                  |                                              | 130                 | 260                              |                                                 |             |     |
| IA                                                     | Indoor Air Human Health-Bas<br>Criterion                | ed µg/m <sup>3</sup>               |                                              | 1.6                 | 3.1                              |                                                 |             |     |
| SGSL                                                   | Human Health-Based Soil G<br>Screening Criterion        | µg/m°                              |                                              | 79                  | 160                              |                                                 |             |     |
| RAL                                                    | Human Health-Based Rapi<br>Action Criterion             | d µg/m <sup>3</sup>                |                                              | 160                 | 310                              |                                                 |             |     |
|                                                        | ve Nonresidential II<br>e Nonresidential Soi            |                                    |                                              |                     | 3.1<br>160                       | µg/m <sup>3</sup><br>µg/m <sup>3</sup>          | Cancer-bas  | sed |
|                                                        | ve Nonresidential R                                     |                                    |                                              |                     | 310                              | µg/m³ 🞽                                         | Cancer-bas  |     |

2 H

192

## Submittal and Approval Process for Alternative Vapor Intrusion Screening Levels

- Pre-approval is not required for alternative VISL but recommended prior to use
- SGSL and RAL derived directly from an ARS for indoor air, which must be approved prior to use
  - Option to submit application for ARS for indoor air, SGSL, and/or RAL simultaneously but cannot use until ARS for indoor air approved





## Submittal and Approval Process for Alternative Vapor Intrusion Screening Levels

### **Documentation Requirements:**

- Alternative or Interim Remediation Standard and/or Screening Level Application Form and Remediation Standard Notification Spreadsheet
- Basis for the site-specific parameters used in the development of the alternative VISL
- Application of the alternative VISL at the site or AOC





## Submittal and Approval Process for Alternative Vapor Intrusion Screening Levels

### **Documentation Requirements (continued):**

- Printout of the applicable calculations showing the modified input parameters and resulting alternative VISL using:
  - Department's Vapor Intrusion Exposure Pathway Calculator at <u>https://nj.gov/dep/srp/guidance/rs/</u> (SGSL and RAL)
  - NJDEP J&E Spreadsheet (GWSL)
- Approved ARS for indoor air for alternative SGSL/RAL if applying separately





## Additional Information on Vapor Intrusion Website

- Vapor Intrusion Technical Guidance, Appendix G
- VISL Basis and Background
- IARS for the Vapor Intrusion Exposure Pathway Basis and Background

https://www.nj.gov/dep/srp/guidance/vaporintrusion/





## **NJDEP Vapor Intrusion Contacts**

- Erica Snyder IARS and VISL
  - <u>Erica.Snyder@dep.nj.gov</u>
- Nicole Kalaigian VI Investigation and Mitigation
  - <u>Nicole.Kalaigian@dep.nj.gov</u>

Technical Consultations Available Upon Request





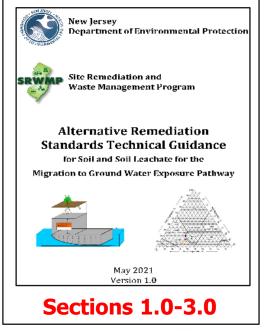
## **Questions?**










## LUNCH DO NOT LOG OUT OF THE WEBINAR

## Alternative Remediation Standards for the Migration to Ground Water Pathway



## Introduction and Overview of the Migration to Ground Water Exposure Pathway

Dr. Swati Toppin, PhD, Rule Manager Bureau of Environmental Evaluation and Risk Assessment swati.toppin@dep.nj.gov



201



## **Committee Members**

### NJDEP

Dr. Swati Toppin, Chair George Blyskun (retired) William Carp Ann Charles Dr. Barry Frasco MaryAnne Kuserk

Dr. Paul Sanders (retired)

Matthew Turner



### **Stakeholders**

Stephen Posten, LSRP Michael Gonshor, LSRP

\* Robert Schneiker, SEAVIEW Model, Environmental Software Consultants



## **Presentation Objectives**

- Pertinent website details
- Ins and outs of the ARS as it pertains to MGW pathway and the various options
- Will not address remediation options, compliance and attainment options (such as capping) or permits
- Regulatory authority See N.J.A.C.-7:26D. This is Appendix 8 in the rule





## **Introduction to the ARS Process**

### The Guidance is on the SRWMP webpage at: <u>https://www.nj.gov/dep/srp/guidance</u>

or

Access through the Remediation Standards Website at: <u>https://www.nj.gov/dep/srp/guidance/rs/</u>





#### **Remediation Standards**

#### Introduction to Remediation Standards

#### May 2021

These rules implement the provisions of the Brownfield and Contaminated Site Remediation Act, N.J.S.A. 58:10B-12, and other statutes, by establishing standards for the remediation of contaminated ground water, surface water, soil, soil leachate and indoor air. These rules supplement the requirements of the Technical Requirements for Site Remediation rules, N.J.A.C. 7:26E.

On June 2, 2008, the Department adopted new Remediation Standards rules at N.J.A.C. 7:26D. These rules were readopted without change on April 27, 2015. The soil remediation standards contained in those rules were effective on June 2, 2008. The ground water and surface water remediation standards were previously effective at N.J.A.C. 7:26E-1.13.

On September 18, 2017, the Department updated the soil remediation standards for 19 contaminants, as listed in N.J.A.C. 7:26D, Appendix 1, Tables 1A and 1B. The updated soil remediation standards reflect revisions to the toxicity information for these contaminants, as contained in the United States Environmental Protection Agency (USEPA) Integrated Risk Information System (IRIS) database (see <u>www.epa.gov/iris</u>), on which the soil remediation standards are based.

On May 17, 2021, the Department adopted amended rules at N.J.A.C. 7:26D. Included in the amended rules are soil and soil leachate remediation standards for the migration to ground water exposure pathway and indoor air remediation standards for the vapor intrusion exposure pathway. Also included is the replacement of direct contact soil remediation standards with separate soil remediation standards for the inhalation exposure pathway, indoor air for the vapor intrusion exposure pathway, and ground water. Also, the existing process for updating remediation standards has been expanded to include soil and soil leachate for the migration to ground water exposure pathway, indoor air for the vapor intrusion exposure pathway, and ground water. The existing alternative remediation standards process has been expanded to include soil and soil leachate for the migration to ground water exposure pathway, and ground water exposure pathway.

#### **Remediation Standards**

- <u>Remediation Standards, N.J.A.C. 7:26D</u> (May 17, 2021)
- <u>Remediation Standards Proposal</u> (April 6, 2020)
- <u>Remediation Standards Adoption Package</u> (May 17, 2021)

#### Phase In/Order of Magnitude Guidance

The Department has revised the following guidance documents that will help remediating parties comply with the new remediation standards:

- Phase-In Period Guidance for the Use of Remediation Standards, N.J.A.C. 7:26D (Updated May 2021)
- Order of Magnitude Evaluation Guidance (Updated May 2021)

#### **Basis and Background Documents**

- Soil and Soil Leachate Remediation Standards for the Migration to Ground Water Exposure Pathway, Basis and Background (May 2021)
- Soil Remediation Standards for the Ingestion-Dermal Exposure Pathway, Basis and Background (May 2021)
- Soil Remediation Standards for the Inhalation Exposure Pathway, Basis and Background (May 2021)
- Indoor Air Remediation Standards for the Vapor Intrusion Exposure Pathway, Basis and Background (May 2021)

#### **Guidance Documents**

- Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Ground Water Exposure Pathway (Version 1.0 May 2021)
- Alternative Remediation Standards Technical Guidance for Soil for the Ingestion-Dermal and Inhalation Exposure Pathways (Version 1.0 May 2021)
- Vapor Intrusion Technical Guidance (Version 5.0 May 2021) Appendix G provides guidance for the derivation and application of Alternative Remediation Standards for indoor air

#### Calculators

The Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator

Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator (Version 1.0 May 2021)

This includes the following calculators:

## **Site Remediation Guidance Library**

Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Ground Water Exposure Pathway

### Brief Description of Document

Document:

Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Ground Water Exposure Pathway [pdf 1.9 Mb] Version 1.0 May 2021

USEPA Lloyd Kahn method for determination of soil organic carbon

**Response to Comments:** 

Comments and Responses to Comments on release of Draft Alternative Remediation Standards Technical Guidance for the Migration to Ground Water Exposure Pathway [pdf 309 Kb] Version 1.0 May 2021

### Training Links on this topic:

## **Has Anything Changed?**

The new rule does <u>not</u> fundamentally change the way this pathway now needs to be addressed from how it was or should have been addressed prior to this rule adoption

Before rule adoption, site specific IGWSRS still had to be developed from IGWSSLs. The pathway was then addressed using these either these site specific IGWSRS or IGWARS

Now, there is one step less. We have SRS-MGW. The pathway is now addressed using these either these SRS-MGW or ARS-MGW





## **ARS-MGW Process**

• ARS potentially comes into play when total contaminant concentrations in soil exceed SRS-MGW

• There can be several ARS on a site

How to determine when an ARS really needed





### **ARS-MGW Process**

# ARS potentially comes into play when total contaminant concentrations in soil exceed SRS-MGW





## **Reasons for ARS-MGW**

There can be several different ARS on a site, which may be based on:

- Different contaminants
- Different locations- AOC or site-wide
- Different depths
- Different soil types
- ARSs for other exposure pathways



## The Importance of an ARS

- ARS is an alternative remediation standard, and for the <u>MGW exposure</u> <u>pathway</u> it means no institutional or engineering controls are required on the AOC or site (the exception is SESOIL/AT123D, which involves a CEA)
- This obviously pertains only to the contaminant and AOC or site that the ARS is approved for, and for the MGW pathway
- There may be deed restrictions for other contaminants, other AOCs and other pathways





## **ARS Required?**





## **ARS may not be Necessarily be Needed**

Some reasons why an ARS may <u>not</u> be necessary:

- Will contamination be automatically addressed via remediation of other contaminants?
- Will contamination be automatically addressed when other pathways are addressed?
- Can some of the worst areas be removed, and then compliance/attainment done?
- Careful with volatile organic contaminants!!





## **Types of ARS-MGW**

1. Numerical, associated with standards or numbers: Options involving SWPE, SPLP, SESOIL and SESOIL/AT123D

2. Narrative Standards: no concentration is listed for ARS-MGW, but certain conditions are satisfied, leading to the conclusion that the MGW exposure pathway is not of concern





## **Preapproval or Final NJDEP Approval**

Preapproval from DEP may or may not be required depending on the ARS-MGW option (see subchapter 8)

### **Nevertheless:**

- All applications go through the normal inspection & review process, and <u>may be audited by the DEP</u>
- All ARS-MGW options still need <u>final DEP approval</u>, as per the Brownfield Act





## Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator

### Calculators must be used where applicable:

Soil and Soil Leachate Migration to Ground Water Exposure Pathway Calculator (Version 1.0 May 2021)

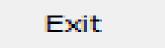
This includes the following calculators:

- •Soil-Water Partition Equation Calculator
- •Synthetic Precipitation Leaching Procedure Calculator
- •Dilution-Attenuation Factor Calculator
- •Fraction Organic Carbon Calculator





NJDEP Calculator


### CALCULATE SITE-SPECIFIC MIGRATION TO GROUNDWATER STANDARDS

Soil-Water Partition Equation (Including Calculation of Dilution-Attenuation Factor)

Calculate Dilution-Attenuation Factor (DAF)

Run SPLP Calculations

Calculate soil organic carbon content



### **Interactions between Options**

- A site/AOC specific value derived using an option, may be used in other options
- There are certain caveats (check guidance for these)
- For example, site specific adsorption coefficient, Kd, derived using SPLP may be used in SWPE





### **Important Note**

Need good documentation

• Check ARS guidance document



Make it easy for reviewer – separate ARS-MGW section(s)







ARS Form

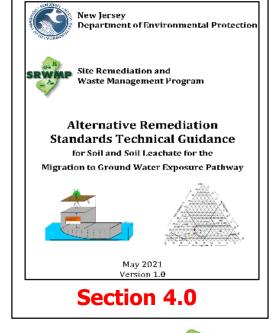
Remediation Standards Notification Spreadsheet

#### https://www.nj.gov/dep/srp/srra/forms/ under "General Forms"





| General Forms                                                                                                                                                                         | Download               |                                   | Version &<br>Date  | Changes Since Last<br>Version | Rule              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|--------------------|-------------------------------|-------------------|
| 7.5 Percent Cost of Remediation Form                                                                                                                                                  | <u>Form</u> pdf 190 Kb | <u>Instructions</u><br>pdf 162 Kb | 1.1 -<br>9/17/2018 | See <u>Update Lo</u> g        | <u>7:26C-4.1(</u> |
| Alternative or New Remediation Standard and/or Screening Level Application form<br>(Name change. Was "Alternative Soil Remediation Standard and/or Screening Level Application form") | <u>Form</u> pdf 195 Kb | <u>Instructions</u><br>pdf 212 Kb | 2.4 -<br>5/3/2021  | See <u>Update Log</u>         | <u>7:26D-7.4</u>  |




## **Thank You!**





Steve Posten, LSRP, Vice President Wood Environment & Infrastructure Solutions, Inc. Licensed Site Remediation Professional Association (LSRPA) <u>stephen.posten@amecfw.com</u>







# **Soil-Water Partition Equation (SWPE)**

- Equation used to calculate default SRS-MGW
- Incorporated directly from EPA Soil Screening Guidance (1996)
  - Does not require knowledge of specific depths of contamination (although necessary for delineation)
  - Very conservative: assumes entire soil column is contaminated
- Generally expected that Investigator will calculate site-specific SRS-MGW in lieu of default value
- Limited ability to modify inputs to SWPE equation
  - Typically, modified inputs result in limited impact on default MGW values





#### Generic IGW (Soil-Water Partition Equation):

$$MGW_{c} = GWRS * \frac{mg}{1000\,\mu g} * \left\{ (K_{oc} * f_{oc}) + \frac{\theta_{w} + (\theta_{a} * H')}{\rho_{b}} \right\} * DAF$$

 $K_{oc} * f_{oc} = K_d (SPLP)$ 

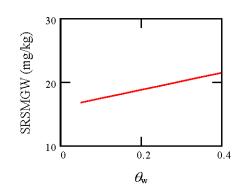




$$MGW_{c} = GWRS * \frac{mg}{1000\,\mu g} * \left\{ (K_{oc} * f_{oc}) + \frac{\theta_{w} + (\theta_{a} * H')}{\rho_{b}} \right\} * DAF$$

| Parameter        | Definition                          | Units                                 | Default                 |
|------------------|-------------------------------------|---------------------------------------|-------------------------|
| MGW <sub>c</sub> | Migration to ground water soil      | mg/kg                                 | Contaminant-specific    |
|                  | criterion                           |                                       |                         |
| GWRS             | Ground water remediation standard   | µg/L                                  | Contaminant-specific    |
| K <sub>d</sub>   | Soil-water partition coefficient    | L/kg                                  | Contaminant-specific or |
|                  |                                     |                                       | site-specific*          |
| K <sub>oc</sub>  | Soil organic carbon-water partition | L/kg                                  | Contaminant-specific    |
|                  | coefficient                         |                                       |                         |
| foc              | Organic carbon content of soil      | kg/kg                                 | 0.002 or site-specific  |
| $\theta_w$       | Water-filled soil porosity          | L <sub>water</sub> /L <sub>soil</sub> | 0.23                    |
| $\theta_a$       | Air-filled soil porosity            | L <sub>air</sub> /L <sub>soil</sub>   | 0.18                    |
| <i>H</i> '       | Henry's law constant                | unitless                              | Contaminant-specific    |
| $ ho_b$          | Dry soil bulk density               | kg/L                                  | 1.5                     |
| DAF              | Dilution-attenuation factor         | unitless                              | 20 or site-specific     |

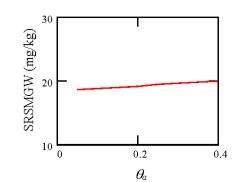
\*ARS-MGW determined using a SPLP-derived  $K_d$  may not exceed the highest concentration tested






5. Sensitivity of remediation standard (SRS-MGW) to soil moisture  $(\theta_w)$ Results shown for xylene.

| θw   | SRSMGW<br>(mg/kg) |
|------|-------------------|
| 0.05 | 16.7              |
| 0.1  | 17.4              |
| 0.15 | 18.1              |
| 0.2  | 18.8              |
| 0.25 | 19.4              |
| 0.3  | 20.1              |
| 0.35 | 20.8              |
| 0.4  | 21.4              |

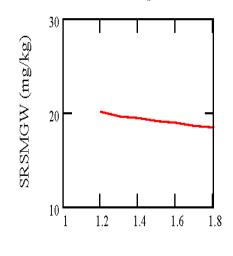

#### Sensitivity to $\theta_{w}$ is small.



6. Sensitivity of remediation standard (SRS-MGW) to soil air content ( $\theta_a$ ). Results shown for xylene.

| $	heta_{ m a}$ | SRSMGW<br>(mg/kg) |
|----------------|-------------------|
| 0.05           | 18.7              |
| 0.1            | 18.9              |
| 0.15           | 19                |
| 0.2            | 19.2              |
| 0.25           | 19.4              |
| 0.3            | 19.6              |
| 0.35           | 19.8              |
| 0.4            | 20                |

#### Sensitivity to $\theta_a$ is small




#### SRSMGW $\rho_{\rm b}$ (kg/L) (mg/kg) 1.2 20.1 1.3 19.7 1.4 19.4 1.5 19.2 1.6 18.9 1.7 18.7 1.8 18.5

#### **Sensitivity Analysis of Fixed Parameters**

7. Sensitivity of remediation standard (SRS-MGW) to soil bulk density ( $\rho_b$ ) Results shown for xylene.

#### Sensitivity to $\rho_{\rm b}$ is small.



 $\rho_{\rm b}\,({\rm kg/L})$ 

## **NJDEP SWPE Calculator: Updated 2021**

|                |                                                                             | JJDEP 207                                      | 21 Soil-V                                | <b>√</b> ater Par      | rtition E       | Equation C                                      | alculator                                     | <i>.</i>                  |                       |                                                                |  |
|----------------|-----------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------|-----------------|-------------------------------------------------|-----------------------------------------------|---------------------------|-----------------------|----------------------------------------------------------------|--|
| Site           | e Name:                                                                     |                                                |                                          |                        |                 |                                                 | Date:                                         |                           |                       | Calculated or locked cell                                      |  |
| Cont           | taminant:                                                                   | Acenaphth                                      | iene                                     |                        |                 | <b>-</b>                                        | CAS No.:<br>Evaluated by:                     |                           | 3-32-9                | Required data entry<br>Optional data entry/modification        |  |
|                |                                                                             |                                                | 2 : 4 *F                                 | -1                     |                 |                                                 |                                               | K                         | · + ; + A             | Optional data entry modino atter.                              |  |
| $MGW_{i}$      | $V_c = GWRS * \frac{10}{10}$                                                | $\frac{mg}{000\mu g} * \left\{ K_d + \right\}$ | $+\frac{\theta_w + \theta_a *H}{\rho_b}$ | $\xrightarrow{f}$ *DAF | $K_{\vec{a}} =$ | $K_{\alpha} * f_{\alpha}$                       |                                               | - 1 +                     | * i * d<br>I * L      | Instructions                                                   |  |
| L              | $.0112 * L^2)^0$                                                            |                                                | - exp[(-L                                | ,*I)/(K*               |                 |                                                 | $[(K_{\infty} * f_{\infty} * \rho_{\delta})]$ | $+ \theta_{\omega} + (H'$ | ' + θ <sub>a</sub> )] | CLICKHERE if Chemical is not<br>on drop-down list, or to enter |  |
| Contam         | ninant Para                                                                 | imeters:                                       |                                          | -                      | Soil Pa         | rameters:                                       |                                               |                           |                       | alternate GWRS                                                 |  |
| Parametei      | n Definition                                                                | Linits                                         | Value                                    | 1                      | Parameter       | n Definition                                    | Linits                                        | Value                     |                       |                                                                |  |
| GVRS           | GroundWater<br>Remediation<br>Standard                                      | μg/L                                           | 400                                      | 1                      | θ.              | Water-filled<br>soil porosity                   | dimensionless<br>(v/v)                        | 0.23                      |                       |                                                                |  |
| к              | Soil Organic<br>Carbon-Water<br>Partition<br>Coefficient                    | Lłkg                                           | 5.03E+03                                 | 1 '                    | θ.              | Air-filled Soil<br>Porosity                     | dimensionless<br>(vtv)                        | 0.18                      |                       |                                                                |  |
| к.             | Soil-Water<br>Partition<br>Coefficient                                      | Likg                                           | 1.01E+01                                 | 1 '                    | f               | (Fraction)<br>Organic Carbon<br>Content of Soil | dimensionless<br>(utu)                        | 0.002                     |                       |                                                                |  |
| H.             | Henry's Law<br>Constant                                                     | dimensionless                                  | 7.52E-03                                 | l '                    | p.              | Dry Soil Bulk<br>Density                        | kg/L                                          | 1.5                       |                       |                                                                |  |
| s              | Water<br>Solubility<br>Soll                                                 | mq/L                                           | 3.90E+00                                 | 1                      |                 |                                                 |                                               | -                         |                       |                                                                |  |
| RL             | Reporting                                                                   | mg/kg                                          | 0.17                                     | NOTES:                 | (click outsi    | ide box when fi                                 | inished)                                      |                           |                       |                                                                |  |
| C              | Soil<br>Saturation<br>Limit                                                 | mgłkg                                          | 40                                       | 1                      |                 |                                                 |                                               |                           |                       | Reset                                                          |  |
| C              | Background<br>Concentrati                                                   | mgłkg                                          | NA                                       |                        |                 |                                                 |                                               |                           |                       | Back to MGW Site-<br>Specific Menu                             |  |
| DAF Pa         | arameters:                                                                  |                                                |                                          |                        |                 |                                                 |                                               |                           |                       |                                                                |  |
|                |                                                                             | inition                                        | Line and                                 |                        |                 | ed to metric:                                   | 4                                             |                           |                       |                                                                |  |
| Parametei<br>L | Longth of Area of                                                           | f Concern Parallel                             | 100 Value                                | units<br>N             | Value<br>30.5   | units<br>m                                      | 4                                             |                           |                       | Exit                                                           |  |
|                | to Ground                                                                   | Water Flau<br>Fhickness                        | 100                                      |                        | 30.5            |                                                 | 4                                             |                           |                       |                                                                |  |
| d,             | · · ·                                                                       | ion Rate                                       |                                          | ft<br>in/yr            | 0.28            | _                                               | 4                                             |                           |                       |                                                                |  |
| · · ·          |                                                                             | Hydraulic                                      |                                          |                        |                 | -                                               | 4                                             |                           |                       |                                                                |  |
| к              | Condu                                                                       | uctivity                                       | 51865                                    |                        | 15808           |                                                 | 4                                             |                           |                       |                                                                |  |
| i              | Grad                                                                        | dient<br>Mining Zog                            |                                          | dimonsionloss          |                 | dimensionless                                   | 4                                             |                           |                       |                                                                |  |
|                | <b>I</b> ,                                                                  | Mixing Zor<br>Dilution-Attenu                  |                                          | ′                      | 3.4             | - M<br>dimensionless                            | 4                                             |                           |                       |                                                                |  |
|                | <u> </u>                                                                    | Jilution-Attens                                | Atton Factor                             |                        | 20              | dimensionless                                   | *                                             |                           |                       |                                                                |  |
| Site-spe       | Site-specific Migration to Groundwater Soil Criterion: 8.20E+01 mg/kg       |                                                |                                          |                        |                 |                                                 |                                               |                           |                       |                                                                |  |
| 0.00           | e.zec et nigng                                                              |                                                |                                          |                        |                 |                                                 |                                               |                           |                       |                                                                |  |
| Sitesr         | Site-specific Migration to Ground Water Soil Remediation Standard (MGWSRS): |                                                |                                          |                        |                 |                                                 |                                               |                           |                       |                                                                |  |
| Site-sp        | ecilie wigh                                                                 | ation to C.                                    |                                          |                        | mg/kg           |                                                 |                                               | SROJ.                     | 1                     |                                                                |  |
| 4              |                                                                             |                                                | 1,                                       | A                      | mg/kg           |                                                 |                                               | ,                         | 1                     |                                                                |  |
|                |                                                                             | ABO'                                           |                                          | SATURA                 |                 | -іміт                                           |                                               | ,                         |                       |                                                                |  |
|                |                                                                             |                                                |                                          |                        |                 |                                                 |                                               | *                         |                       |                                                                |  |

SRWAP 228

- Calculated SRS-MGW cannot exceed C<sub>sat</sub>
- For determination of the fraction of soil organic carbon (f<sub>oc</sub>), DEP recommends use of the Lloyd Kahn laboratory analytical method (other comparable methods acceptable)
  - Minimum 3 samples
  - Specific data handling procedures depending on magnitude of test result variability
  - Site specific  $f_{oc}$  also requires recalculation of  $C_{sat}$  (as necessary)



# **NEW: NJDEP f<sub>oc</sub> Calculator**

|                                       | NJDEP 2021 Organic Carbon Calculat                                                                                                                                                                       | tor                                                                        |                                             |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|
| Site Name:                            |                                                                                                                                                                                                          | Date:                                                                      | Calculated or locked cell                   |
| Additional Description:               |                                                                                                                                                                                                          | Evaluated by:                                                              | Required data entry                         |
| Total<br>organic<br>carbon<br>(mg/kg) | Enter up to 20 total organic carbon content value<br>mg/kg. Leave unused cells blank. Reset                                                                                                              | Optional data entry                                                        |                                             |
|                                       | Maximum organic carbon = 0 mg/kg<br>Minimum organic carbon = 0 mg/kg<br>Maxium/Minimum = #DIV/0!<br>Average organic carbon = #DIV/0! mg/kg<br>#DIV/0!                                                    |                                                                            | Reset<br>Back to MGW Site-<br>Specific Menu |
|                                       | (Fraction) organic carbon content for MGW soil-water<br>Percent organic carbon for SESOIL model:<br>Percent organic carbon for SESOIL/AT123D model:<br>(Fraction) organic carbon for inhalation pathway: | partition #DIV/0! #DIV/0!<br>#DIV/0! #DIV/0!<br>#DIV/0!<br>#DIV/0! #DIV/0! | Exit                                        |
|                                       | #DIV/0!                                                                                                                                                                                                  |                                                                            |                                             |
| NOTES: (click outsid                  | le box when finished)                                                                                                                                                                                    |                                                                            |                                             |





- The  $K_{oc}$  of phenolic compounds is dependent on soil pH
  - Site-specific  $K_{oc}$  and resultant SRS-MGW can be developed:
    - Minimum 3 soil samples for pH analysis
    - Consult guidance document table: " $K_{oc}$  Values (L/kg) for Ionizing Organics as a Function of pH"
- Consultation with DEP required for use of SWPE:
  - Determination of GWRS in Class I and III aquifers
  - Determination of GWRS for unlisted contaminants





## **Thank You!**





# ARS-MGW Development using the Synthetic Precipitation Leachate Procedure (SPLP)

Michael Gonshor, P.G., LSRP Principal Hydrogeologist - Roux Associates, Inc. <u>mgonshor@rouxinc.com</u>





### Proposed SRS Modifications Related to SPLP

- Leachate Standards (LS) (formerly Leachate Criteria): Some LS changed with new SRS-MGW
- Be sure to evaluate SPLP results vs. new LS
- SPLP calculator spreadsheet was updated by NJDEP to reflect new LS under the new SRS-MGW





## **Sampling Considerations**

- Separate samples for each soil type
- Separate samples for each AOC
- Lithology
  - Highly variable lithology (e.g., silt-sand-clay stringers)
- Field Screening Readings and Observations
  - Varying field screening readings over short intervals
  - Variability in staining
  - Free or residual product visible or suspected

Each of the above can complicate obtaining samples with consistent concentrations, especially for samples for VOC analyses

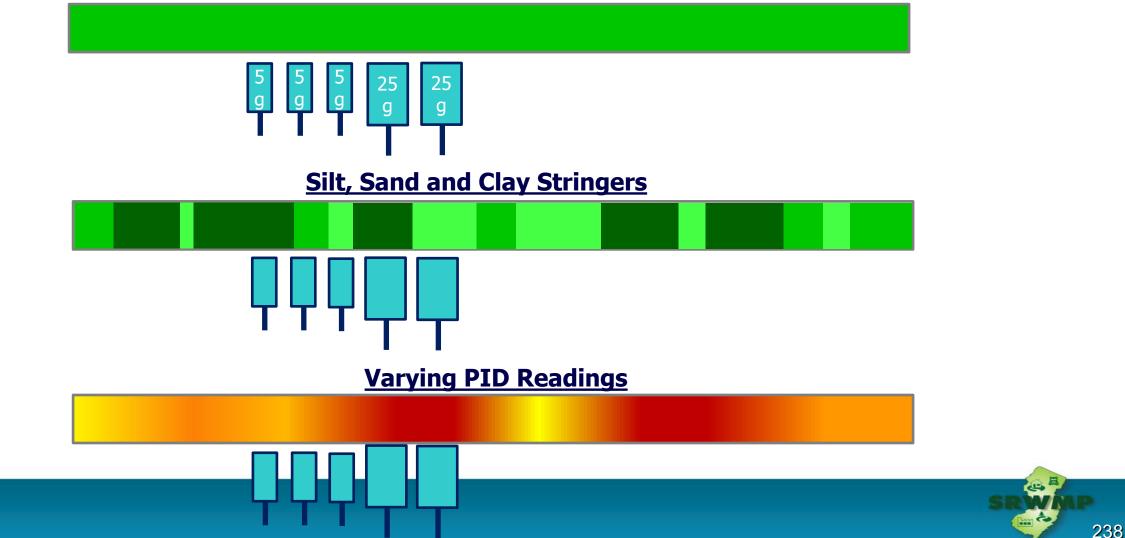


## Sampling Considerations (cont.)

- Collect a sufficient number of samples for potential SPLP analyses
- Be mindful of holding times for SPLP extractions and analyses
   Consider extract and hold for SPLP analyses
- Costs for collection of additional sample volume and SPLP extractions is minimal relative to re-sampling
- Don't forget the dry weight sample when collecting samples for VOC analyses

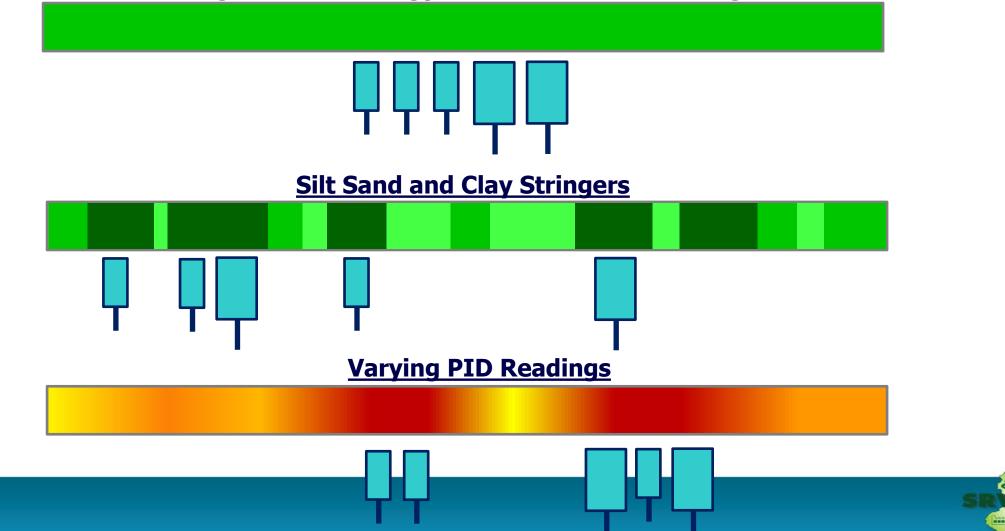


### Homogenization - FSPM Section 6.2.8


- Collect soil samples for VOC analysis first Do <u>not</u> homogenize samples for VOC analyses
- Soil to be analyzed for <u>non-VOC</u> parameters must be homogenized to create a representative sample
  - It is important that mixing of soil be as thorough as possible the goal is to achieve a consistent physical appearance






### **Sampling Procedures – Volatiles**

Homogeneous Lithology. Consistent PID Readings



### **Sampling Procedures –Volatiles**

#### Homogeneous Lithology. Consistent PID Readings

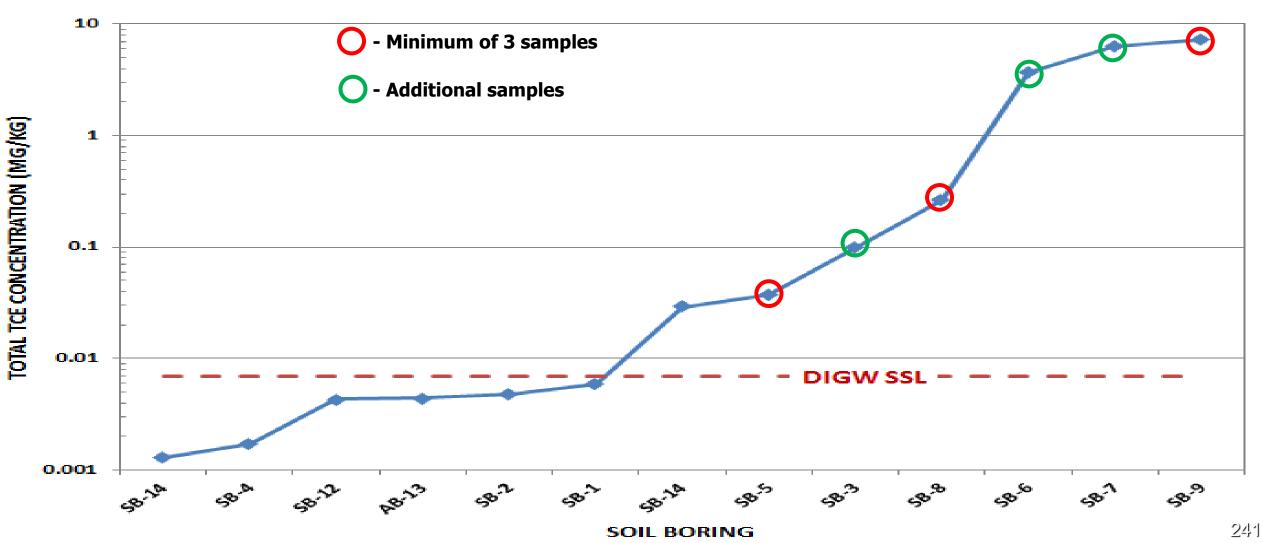


### **Sample Selection for SPLP Analyses**

#### • Minimum Number of Samples vs. A Good Idea

- Minimum 3 samples per SPLP Guidance (per AOC and Soil Type)
  - UHOT Exception 1 sample
- A Good Idea More than 3

#### • Samples to Release for SPLP Analyses


- Guidance suggests range of concentrations including maximum detected total concentration
- May not be a good idea for VOCs
- Will be dependent of soil type, total organic carbon, individual VOC of concern, and total concentrations



#### **Use your Professional Judgment and Experience**

### **Sample Selection for SPLP Analyses**

#### TOTAL TCE CONCENTRATION vs. DIGW SSL



#### **Data Evaluation**

- Leachate from soil is diluted when it mixes with the groundwater
- The amount of dilution is the DAF (default of 20 for NJ)
- Therefore: LS is 20 times the GWRS





### **Data Evaluation**

- Must use SPLP calculator spreadsheet
  - Do not directly compare SPLP aqueous leachate concentrations to NJDEP Leachate Standards

|           | s SPLP<br>(1)                                                             | СС                   | once | ntrati<br>entra | ion an<br>tion a | en SPLP<br>d field  <br>s a fund | leachat<br>leachat<br>ction of     |       |
|-----------|---------------------------------------------------------------------------|----------------------|------|-----------------|------------------|----------------------------------|------------------------------------|-------|
|           | Field leachate concentration minus SPLP<br>leachate concentration (µg/mL) | 30<br>25<br>20       |      | CO              | ntamıı           | hant K <sub>d</sub>              |                                    |       |
| nte<br>on | l leachate co<br>leachate co                                              | 15<br>10<br>5        |      | X               |                  |                                  |                                    |       |
|           | Field                                                                     | 0<br>-5 <sup>0</sup> |      | 1<br>Contamina  | 10<br>ant Adsorp | 100<br>tion Coefficie            | 1000<br>ent, K <sub>d</sub> (mL/g) | 10000 |

| Sample ID | Soil<br>sample<br>weight<br>(kg) | Leachate<br>Volume<br>(L) | Total Soil<br>Concentration<br>(mg/kg) | SPLP Leachate<br>Concentration<br>(μg/L) | Final pH<br>of<br>Leachate | Kd<br>(L/kg) | %<br>Contaminant<br>in Leachate | Field leachate<br>concentration<br>(µg/L) |
|-----------|----------------------------------|---------------------------|----------------------------------------|------------------------------------------|----------------------------|--------------|---------------------------------|-------------------------------------------|
| SB-5      | 0.025                            | 0.5                       | 0.0376                                 | 0.72                                     |                            |              |                                 | 1.2                                       |
| SB-3      | 0.025                            | 0.5                       | 0.0989                                 | 3.5 🛑                                    |                            |              |                                 | 11.7                                      |
| SB-6      | 0.025                            | 0.5                       | 3.7                                    | 103 🛑                                    |                            | 10.0         |                                 | 229.4                                     |
| SB-9      | 0.025                            | 0.5                       | 7.27                                   | 144 🔶                                    |                            |              |                                 | 236.9                                     |



TCE

## Data Evaluation (cont') d

- Are Data Valid Do Results Make Sense
- High Kd Outlier Example
- Negative Kd Outlier Example
- RLs vs. MDLs

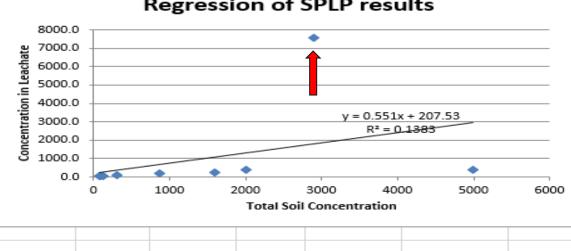




| Case name/area of<br>concern: | Lead Test  | 1             |               |                        | SITE S       | PECIFIC      | Rese           |              | Print Res    | _              |                |               | • -     |
|-------------------------------|------------|---------------|---------------|------------------------|--------------|--------------|----------------|--------------|--------------|----------------|----------------|---------------|---------|
| Case number:                  |            | 1             |               |                        | IGW ST       | ANDARD       |                |              |              |                | Suspect Result |               |         |
| Sampling date:                |            | 3/26/201      | 13            |                        | CLICK HE     | DEifchomi    | al is not on o | tran         | Print to     | JU             | ושאברו         | L NCSU        | IL      |
| Contaminant:                  | Lead (tota | il)           | -             | NOTE:                  |              |              | alternate GW   |              |              |                |                |               |         |
| CAS No:                       |            | 7439-92-1     |               | USE ONE PAGE           | PER CONT     | AMINANT,     | do not leave   | e empty ro   | ws between   | samples        |                |               |         |
| Water solubility (mg/L)       |            | NA            |               | Do not enter sa        | mples wit    | h soil conc  | entrations a   | at or below  | the reportin | ıg limit       |                |               |         |
| Aqueous reporting limit (     |            | When leachate | concentra     | ation is non           | -detect, ent | ter the aqu  | eous report    | ing limit    |              |                |                |               |         |
| Soil reporting limit (mg/k    | g):        | 1.00E+00      |               | Enter site-spec        | ific dilutio | n-attenuatio | on factor (D   | AF) if desir | red          |                |                |               |         |
| Health-based GWQC (µg         | J/L)       | 5.00E+00      |               |                        | Data entry   | cells (do n  | ot skip rows   | ;)           |              |                |                |               |         |
| DAF (13, or site-specific i   | f approved | 13            |               |                        | Optional d   | lata entry   |                |              |              |                |                |               |         |
| Leachate Criterion (µg/L)     | C          | 6.50E+01      |               |                        | Calculated   | d or locked  | cells          |              |              |                |                |               |         |
| Henry's law constant (din     | nensionles | 0.00E+00      |               |                        | Indicates    | that Alterna | ative Reme     | diation Sta  | ndard needs  | s to be rec    | alculated      |               |         |
|                               |            |               |               |                        |              |              |                |              |              |                |                |               |         |
| Leachate Lotal Soll           |            |               | SPLP          | Final pH Optional data |              |              |                |              | %            | Field leachate |                |               |         |
| Sample ID                     | sample     |               | Concentration | Leachate               | of           | Sampling     |                | Organic      | Organia      | Kd (L/ka)      |                | concentration | Pass or |

| Sample ID            | weight<br>(kg) | Volume<br>(L) | Concentration<br>(mg/kg) | Concentration<br>(µg/L) | of<br>Leachate | Sampling<br>Depth (ft) |            | Carbon<br>(mg/kg) | Organic<br>Carbon (%) |         | Contaminant<br>in Leachate | concentration<br>(µg/L) | fail? |
|----------------------|----------------|---------------|--------------------------|-------------------------|----------------|------------------------|------------|-------------------|-----------------------|---------|----------------------------|-------------------------|-------|
| SB-12                | 0.1001         | 2.002         | 92                       | 50                      | 9.3            | 0.5-1.0                | Sandy Loar | r NA              | NA                    | 1820.0  | 1.09                       | 50.5                    | PASS  |
| SB-3                 | 0.1005         | 2.01          | 75                       | 50                      | 4.68           | 1.5-2.0                | Sandy Loar | r NA              | NA                    | 1480.0  | 1.33                       | 50.7                    | PASS  |
| SB-14                | 0.05           | 1             | 120                      | 65                      | 8.85           | 0-0.5                  | Sandy Loar | r NA              | NA                    | 1826.2  | 1.08                       | 65.7                    | FAIL  |
| SB-1RA               | 0.05           | 1             | 300                      | 110                     | 8.65           | 0-0.5                  | Sandy Loar | r NA              | NA                    | 2707.3  | 0.73                       | 110.8                   | FAIL  |
| SB2RB                | 0.0569         | 1.138         | 870                      | 177                     | 5.86           | 0-0.5                  | Sandy Loar | r NA              | NA                    | 4895.3  | 0.41                       | 177.7                   | FAIL  |
| SB1-RD               | 0.05           | 1             | 1600                     | 220                     | 8.83           | 0-0.5                  | Sandy Loar | r NA              | NA                    | 7252.7  | 0.28                       | 220.6                   | FAIL  |
| SB-10                | 0.1            | 2             | 2000                     | 370                     | 9.43           | 0-0.5                  | Sandy Loar | r NA              | NA                    | 5385.4  | 0.37                       | 371.4                   | FAIL  |
| BT-SB-10/0-2 Control | 0.1004         | 2.008         | 5000                     | 386                     | 6.33           | 0-2                    | Sandy Loar | r NA              | NA                    | 12933.4 | 0.15                       | 386.6                   | FAIL  |
| SB-10                | 0.1            | 2             | 2900                     | 7200                    | 4.82           | 1.5-2                  | Sandy Loar | r NA              | NA                    | 382.8   | 4.97                       | 7573.2                  | FAIL  |
|                      |                |               |                          |                         |                |                        |            |                   |                       |         |                            |                         |       |
|                      |                |               |                          |                         |                |                        |            |                   |                       |         |                            |                         |       |

#### SPLP RESULTS for


- OPTION 1a: All adjusted leachate concentrations are below the leachate criterion OPTION 1a NOT VALID
- OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard

REMEDIATION STANDARD = 92 mg/kg

OPTION 2: Remediation standard using site-specific Kd value

Kd ratio = 33.79, USE MINIMUM Kd Kd USED FOR CALCULATING STANDARD = 382.78 L/kg result before adjustment = 24.8905 mg/kg REMEDIATION STANDARD = 25 mg/kg

- OPTION 3: Remediation standard using linear regression
  - Number of points = 9
- Soil concentration midrange = 2537.5
- Number of points above midrange = 2
- Enough points above midrange? NO
- R-Square high enough? NO
- Leachate criterion within range of leachate concentrations? YES OPTION 3 NOT VALID



#### **Regression of SPLP results**

245

|                            | -                                          | -        | -  |                                  | 0.110         |                            |              |             |           |                  |             |        |        |  |
|----------------------------|--------------------------------------------|----------|----|----------------------------------|---------------|----------------------------|--------------|-------------|-----------|------------------|-------------|--------|--------|--|
| concern:                   | Lead Test                                  | 2        |    |                                  | SITE S        | ULATE<br>PECIFIC<br>ANDARD | Spreads      | t<br>heet   | Print Res | Susp             | ect R       | Result |        |  |
| Case number:               |                                            | 1        |    |                                  |               |                            |              |             |           |                  |             |        |        |  |
| Sampling date:             |                                            | 3/26/201 | 13 |                                  |               |                            |              |             | Print to  | _                | _           |        | _      |  |
|                            |                                            |          |    |                                  |               | RE if chemic               |              |             | Fintto    | Removed / Sample |             |        |        |  |
| Contaminant:               | Lead (tota                                 | al)      | -  | NOTE:                            |               | t, or to entera            |              |             |           | кеш              | Oveu        |        | idie ! |  |
| AS No: 7439-92-1           |                                            |          |    | USE ONE PAGE                     |               |                            | wsbetw       |             |           |                  |             |        |        |  |
| Water solubility (mg/L)    |                                            | NA       |    | Do not enter sa                  | mples wit     | h soil conce               | entrations a | at or below | the repo  | <b>D</b>         |             |        |        |  |
| Aqueous reporting limit (  | µg/L):                                     | 5.00E+00 |    | When leachate                    | concentra     | ation is non-              | detect, ent  | ter the aqu | eous rep  | $D \cap \Lambda$ | nalvz       |        |        |  |
| Soil reporting limit (mg/k | g):                                        | 1.00E+00 |    | When leachate<br>Enter site-spec | ific dilution | n-attenuatio               | n factor (D  | AF) if desi | red       |                  | A I a I v z |        |        |  |
| Health-based GWQC (µg      | j/L)                                       | 5.00E+00 |    |                                  | Data entry    | cells (do no               | ot skip rows | 5)          | L         |                  |             |        |        |  |
| DAF (13, or site-specific  | if approved                                | 13       |    |                                  | Optional d    | lata entry                 |              |             |           |                  |             |        |        |  |
| Leachate Criterion (µg/L)  | ):                                         | 6.50E+01 |    |                                  | Calculated    | d or locked o              | ells         |             |           |                  |             |        |        |  |
| Henry's law constant (dir  | enry's law constant (dimensionles 0.00E+00 |          |    |                                  | Indicates     | that Alterna               | tive Reme    | diation Sta | ndard nee | eds to be rec    | alculated   |        |        |  |
|                            |                                            |          |    |                                  |               |                            |              |             |           |                  |             |        |        |  |

|                      | Soil                     | Leachate      | 1 1  | Concentration | Final pH<br>of<br>Leachate |                        | Option     | al data                      |                       | 1       | %           |       | Pass or<br>fail? |
|----------------------|--------------------------|---------------|------|---------------|----------------------------|------------------------|------------|------------------------------|-----------------------|---------|-------------|-------|------------------|
| Sample ID            | sample<br>weight<br>(kg) | Volume<br>(L) |      |               |                            | Sampling<br>Depth (ft) |            | Organic<br>Carbon<br>(mg/kg) | Organic<br>Carbon (%) |         | in Leachate |       |                  |
| SB-12                | 0.1001                   | 2.002         | 92   | 10            | 9.3                        | 0.5-1.0                | Sandy Loar | NA                           | NA                    | 9180.0  | 0.22        | 10.0  | PASS             |
| SB-3                 | 0.1005                   | 2.01          | 75   | 10            | 4.68                       | 1.5-2.0                | Sandy Loar | NA                           | NA                    | 7480.0  | 0.27        | 10.0  | PASS             |
| SB-14                | 0.05                     | 1             | 120  | 65            | 8.85                       | 0-0.5                  | Sandy Loar | NA                           | NA                    | 1826.2  | 1.08        | 65.7  | FAIL             |
| SB-1RA               | 0.05                     | 1             | 300  | 110           | 8.65                       | 0-0.5                  | Sandy Loar | NA                           | NA                    | 2707.3  | 0.73        | 110.8 | FAIL             |
| SB2RB                | 0.0569                   | 1.138         | 870  | 177           | 5.86                       | 0-0.5                  | Sandy Loar | NA                           | NA                    | 4895.3  | 0.41        | 177.7 | FAIL             |
| SB1-RD               | 0.05                     | 1             | 1600 | 220           | 8.83                       | 0-0.5                  | Sandy Loar | NA                           | NA                    | 7252.7  | 0.28        | 220.6 | FAIL             |
| SB-10                | 0.1                      | 2             | 2000 | 370           | 9.43                       | 0-0.5                  | Sandy Loar | NA                           | NA                    | 5385.4  | 0.37        | 371.4 | FAIL             |
| BT-SB-10/0-2 Control | 0.1004                   | 2.008         | 5000 | 386           | 6.33                       | 0-2                    | Sandy Loar | NA                           | NA                    | 12933.4 | 0.15        | 386.6 | FAIL             |
|                      |                          |               |      |               |                            |                        |            |                              |                       |         |             |       |                  |
|                      |                          |               |      |               |                            |                        |            |                              |                       |         |             |       |                  |

#### SPLP RESULTS for

- OPTION 1a: All adjusted leachate concentrations are below the leachate criterion OPTION 1a NOT VALID
- OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard
  - **REMEDIATION STANDARD = 92 mg/kg**
- OPTION 2: Remediation standard using site-specific Kd value
- Kd ratio = 7.08, AVERAGING Kds OK Kd USED FOR CALCULATING STANDARD = 6457.52 L/kg result before adjustment = 419.7489 mg/kg
- REMEDIATION STANDARD = 420 mg/kg
- OPTION 3: Remediation standard using linear regression
- Number of points = 8
- Soil concentration midrange = 2537.5
- Number of points above midrange = 1
- Enough points above midrange? NO
- R-Square high enough? YES
- Leachate criterion within range of leachate concentrations? YES OPTION 3 NOT VALID

**Regression of SPLP results** 500.0 450.0 y = 0.0771x + 72.219 R<sup>2</sup> = 0.7553 in Leachate 400.0 ٠ 350.0 300.0 Concentration 250.0 200.0 -150.0 100.0 50.0 0.0 1000 2000 3000 4000 5000 0 6000 Total Soil Concentration

| Case name/area of<br>concern:<br>Case number:<br>Sampling date:<br>Contaminant: | TCE Test 1               | 1<br>3/15/20  | 13<br>) (Trichloroeth <del>-</del> | NOTE:                               | SITE S<br>IGW ST                                                             | ULATE<br>PECIFIC<br>ANDARD<br>RE if chemic<br>t, or to enter |              | heet                         | Print Results<br>Print to file |         | High K | d Outl                  | ier              |  |
|---------------------------------------------------------------------------------|--------------------------|---------------|------------------------------------|-------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|------------------------------|--------------------------------|---------|--------|-------------------------|------------------|--|
| CAS No:                                                                         |                          | 79-01-6       |                                    | USE ONE PAGE                        | PER CONT                                                                     | AMINANT,                                                     | do not leave | e empty ro                   | ws between                     | samples |        |                         |                  |  |
| Water solubility (mg/L)                                                         |                          | 1.10E+03      |                                    | Do not enter sa                     |                                                                              |                                                              |              |                              |                                |         |        |                         |                  |  |
| Aqueous reporting limit (                                                       | µg/L):                   | 1.00E+00      |                                    | When leachate                       | When leachate concentration is non-detect, enter the aqueous reporting limit |                                                              |              |                              |                                |         |        |                         |                  |  |
| Soil reporting limit (mg/k                                                      | g):                      | 5.00E-03      |                                    | Enter site-spec                     | nter site-specific dilution-attenuation factor (DAF) if desired              |                                                              |              |                              |                                |         |        |                         |                  |  |
| Health-based GWQC (µg                                                           |                          | 1.00E+00      |                                    |                                     | Data entry                                                                   | cells (do n                                                  | ot skip rows | •)                           |                                |         |        |                         |                  |  |
| DAF (13, or site-specific                                                       |                          | 13            |                                    |                                     | Optional d                                                                   | ata entry                                                    |              |                              |                                |         |        |                         |                  |  |
| Leachate Criterion (µg/L)                                                       | ):                       | 1.30E+01      |                                    |                                     | Calculated or locked cells                                                   |                                                              |              |                              |                                |         |        |                         |                  |  |
| Henry's law constant (dir                                                       | nensionles               | 4.22E-01      |                                    |                                     | Indicates that Alternative Remediation Standard needs to be recalculated     |                                                              |              |                              |                                |         |        |                         |                  |  |
|                                                                                 |                          |               |                                    |                                     |                                                                              |                                                              |              |                              |                                |         |        |                         |                  |  |
|                                                                                 | Soil                     | Leachate      | Total Soil                         | SPLP                                | Final pH                                                                     |                                                              | Option       | al data                      | Í                              |         | %      | Field leachate          |                  |  |
| Sample ID                                                                       | sample<br>weight<br>(kg) | Volume<br>(L) | Concentration<br>(mg/kg)           | Leachate<br>Concentration<br>(µg/L) | of                                                                           | Sampling<br>Depth (ft)                                       | Soil Type    | Organic<br>Carbon<br>(mg/kg) | Organic<br>Carbon (%)          |         |        | concentration<br>(µg/L) | Pass or<br>fail? |  |
| SB-7                                                                            | 0.025                    | 0.5           | 6.28                               | 0.22                                | 6.12                                                                         | 17-17.5                                                      | Clay         | NA                           |                                | 28525.5 | 0.07   | 0.2                     | PASS             |  |
| SB-5                                                                            | 0.025                    | 0.5           | 0.0376                             | 0.72                                | 7.1                                                                          | 25.5-26                                                      | Clay         | NA                           | NA                             | 32.2    | 38.30  | 1.2                     | PASS             |  |

18-18.5

16-16.5

22+22.5

Clav

Clay

Clay

NA

NA.

NA

NA

NA

NA

7.42

6.7

7.22

OPTION 1a: All adjusted leachate concentrations are below the leachate criterion OPTION 1a NOT VALID

0.5

0.5

0.5

OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard

REMEDIATION STANDARD = 0.0989 mg/kg

OPTION 2: Remediation standard using site-specific Kd value

0.025

0.025

0.025

Kd ratio = 3454.64, USE MINIMUM Kd Kd USED FOR CALCULATING STANDARD = 8.26 L/kg result before adjustment = 0.11 mg/kg REMEDIATION STANDARD = 0.1 mg/kg

OPTION 3: Remediation standard using linear regression

Number of points = 4

SPLP RESULTS for

SB-3

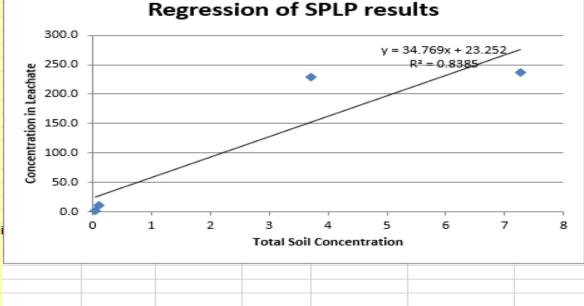
SB-6

SB-9

(points were eliminated because leachate concentrations were not above the aqueous reporting li

0.0989

3.7


7.27

3.5

103

144

- Soil concentration midrange = 3.65
- Number of points above midrange = 2
- Enough points above midrange? YES
- R-Square high enough? YES
- Leachate criterion within range of leachate concentrations? YES
- result before adjustment = -0.2949 mg/kg
- REMEDIATION STANDARD = 0.005 mg/kg (controlled by soil PQL)



8.3

15.9

30.5

70.78

55.68

39.61

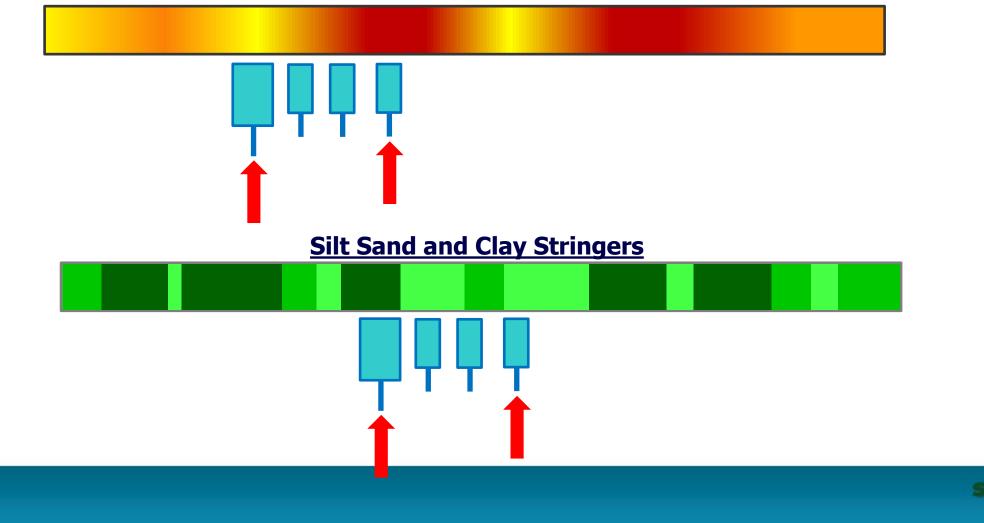
PASS

FAIL

FAIL

11.7

229.4


236.9

| Case name/area of<br>concern:<br>Case number:<br>Sampling date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TCE Test 1                            | 1<br>3/15/20              | 13                                     |                                     | SITE S<br>IGW ST           |                        | calisnoton ( | heet<br>drop-                | High                  | n Kd        | Valu                            | ie Rer                                             | nov              | ed              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|----------------------------------------|-------------------------------------|----------------------------|------------------------|--------------|------------------------------|-----------------------|-------------|---------------------------------|----------------------------------------------------|------------------|-----------------|
| Contaminant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trichloroe                            | thene (TCE                | ) (Trichloroeth 🔫                      | NOTE:                               | down lis                   | t, or to enter         | alternate GW | /QC -                        |                       | _           |                                 |                                                    |                  |                 |
| CAS No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                     | 79-01-6                   |                                        | USE ONE PAGE                        | PER CONT                   |                        | do not leav  | e empty ro                   | ws between            | samples     |                                 |                                                    |                  |                 |
| Water solubility (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 1.10E+03                  |                                        | Do not enter sa                     |                            |                        |              |                              |                       |             |                                 |                                                    |                  |                 |
| Aqueous reporting limit (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ua/L):                               | 1.00E+00                  |                                        | When leachate                       |                            |                        |              |                              |                       |             |                                 |                                                    |                  |                 |
| Soil reporting limit (mg/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 5.00E-03                  |                                        | Enter site-spec                     |                            |                        |              |                              |                       |             |                                 |                                                    |                  |                 |
| Health-based GWQC (µc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 1.00E+00                  |                                        |                                     |                            |                        | ot skip rows |                              |                       |             |                                 |                                                    |                  |                 |
| DAF (13, or site-specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                           |                                        |                                     | Optional of                |                        |              | ,<br>,                       |                       |             |                                 |                                                    |                  | -               |
| Leachate Criterion (µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 1.30E+01                  |                                        |                                     |                            | d or locked            | cells        |                              |                       |             |                                 |                                                    |                  | -               |
| Henry's law constant (dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                           |                                        |                                     |                            |                        |              | diation Sta                  | indard needs          | s to be rec | alculated                       |                                                    |                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                           |                                        |                                     |                            |                        |              |                              |                       |             |                                 |                                                    |                  | -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Soil                                  | Lassbata                  | Total Call                             | SPLP                                | <b>Final all</b>           |                        | Optior       | nal data                     |                       |             |                                 |                                                    |                  | [               |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sample<br>weight<br>(kg)              | Leachate<br>Volume<br>(L) | Total Soil<br>Concentration<br>(mg/kg) | Leachate<br>Concentration<br>(µg/L) | Final pH<br>of<br>Leachate | Sampling<br>Depth (ft) | Soil Type    | Organic<br>Carbon<br>(mg/kg) | Organic<br>Carbon (%) | Kd (L/kg)   | %<br>Contaminant<br>in Leachate | Field leachate<br>concentration<br>(µg/L)          | Pass or<br>fail? |                 |
| SB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.025                                 | 0.5                       | 0.0376                                 | 0.72                                | 7.1                        | 25.5-26                | Clay         | NA                           | NA                    | 32.2        | 38.30                           | 1.2                                                | PASS             |                 |
| SB-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.025                                 | 0.5                       | 0.0989                                 | 3.5                                 | 7.42                       | 18-18.5                | Clay         | NA                           | NA                    | 8.3         | 70.78                           | 11.7                                               | PASS             |                 |
| SB-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.025                                 | 0.5                       | 3.7                                    | 103                                 | 6.7                        | 16-16.5                | Clay         | NA                           | NA                    | 15.9        | 55.68                           | 229.4                                              | FAIL             |                 |
| SB-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.025                                 | 0.5                       | 7.27                                   | 144                                 | 7.22                       | 22-22.5                | Clay         | NA                           | NA                    | 30.5        | 39.61                           | 236.9                                              | FAIL             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                           |                                        |                                     |                            |                        |              |                              |                       |             |                                 |                                                    |                  |                 |
| <ul> <li>SPLP RESULTS for</li> <li>OPTION 1a: All adjusted leachate concentrations are below the leachate criterion<br/>OPTION 1a NOT VALID</li> <li>OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard</li> <li>REMEDIATION STANDARD = 0.0989 mg/kg</li> <li>OPTION 2: Remediation standard using site-specific Kd value<br/>Kd ratio = 3.90, AVERAGING Kds OK<br/>Kd USED FOR CALCULATING STANDARD = 21.72 L/kg<br/>result before adjustment = 0.285 mg/kg</li> <li>OPTION 3: Remediation standard using linear regression<br/>Number of points = 4<br/>Soil concentration midrange = 3.65<br/>Number of points above midrange = 2<br/>Enough points above midrange? YES</li> </ul> |                                       |                           |                                        |                                     |                            |                        |              |                              |                       | -<br>-<br>3 | SPLP resu<br>y = 3              | 34.769x + 23.252<br>R <sup>2</sup> = 0.8385<br>6 7 | •                |                 |
| R-Square high enoug<br>Leachate criterion with<br>result before adjustm<br>REMEDIATION STAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h? YES<br>hin range o<br>ent = -0.294 | f leachate (<br>49 mg/kg  |                                        |                                     |                            |                        |              |                              |                       |             |                                 |                                                    |                  | <b>P</b><br>248 |



### High Kd Values Possible Cause – Mismatched Samples

**Varying PID Readings** 





#### NJDEP SPLP Spreadsheet, V3.1, November 2013

| Case name/area of | Ajax     |
|-------------------|----------|
| concern:          |          |
| Case number:      | 11111    |
| Sampling date:    | 4/4/2014 |
|                   |          |

#### Negative Kd Value Example

| Contaminant:                  | Trichloroethene (TCE) (Trichloroeth |          |  |  |  |  |  |  |
|-------------------------------|-------------------------------------|----------|--|--|--|--|--|--|
| CAS No:                       |                                     | 79-01-6  |  |  |  |  |  |  |
| Water solubility (mg/L)       | 1.10E+03                            |          |  |  |  |  |  |  |
| Aqueous reporting limit (µg   | 1.00E+00                            |          |  |  |  |  |  |  |
| Soil reporting limit (mg/kg): |                                     | 5.00E-03 |  |  |  |  |  |  |
| Health-based GWQC (µg/L       | .)                                  | 1.00E+00 |  |  |  |  |  |  |
| DAF (20, or site-specific if  | approved):                          | 20       |  |  |  |  |  |  |
| Leachate Criterion (µg/L):    | 2.00E+01                            |          |  |  |  |  |  |  |
| Henry's law constant (dime    | 4.22E-01                            |          |  |  |  |  |  |  |

#### NOTE:

USE ONE PAGE PER CONTAMINANT, do not leave empty rows between samples Do not enter samples with soil concentrations at or below the reporting limit When leachate concentration is non-detect, enter the aqueous reporting limit Enter site-specific dilution-attenuation factor (DAF) if desired Data entry cells (do not skip rows)

Optional data entry

Calculated or locked cells

Indicates that Alternative Remediation Standard needs to be recalculated

|           | Soil                     | Leachate      | Total Soil<br>Concentration<br>(mg/kg) | SPLP Leachate<br>Concentration<br>(µg/L) | Final pH of<br>Leachate<br>(except<br>VOCs) |                        | Optior    | nal data                     | _                     |      | %      | Field leachate<br>concentration<br>(µg/L) | Pass or |
|-----------|--------------------------|---------------|----------------------------------------|------------------------------------------|---------------------------------------------|------------------------|-----------|------------------------------|-----------------------|------|--------|-------------------------------------------|---------|
| Sample ID | sample<br>weight<br>(kg) | Volume<br>(L) |                                        |                                          |                                             | Sampling<br>Depth (ft) | Soil Type | Organic<br>Carbon<br>(mg/kg) | Organic<br>Carbon (%) |      |        |                                           |         |
| SB-Ust-1  | 0.02                     | 0.4           | 0.0079                                 | 0.28                                     | 9.08                                        |                        |           |                              |                       | 8.2  | 70.89  | 0.28                                      | PASS    |
| SB-UST-2  | 0.02                     | 0.4           | 0.058                                  | 0.63                                     | 9                                           |                        |           |                              |                       | 72 1 | 21.72  | 0.63                                      | PASS    |
| SB-UST-3  | 0.02                     | 0.4           | 0.0047                                 | 1.3                                      | 9.07                                        |                        |           |                              |                       | 0.0  | 553.19 | 23.03                                     | FAIL    |
| SB-UST-4  | 0.02                     | 0.4           | 2.4                                    | 40                                       | 7.13                                        |                        |           |                              |                       | 40.0 | 33.33  | 59.70                                     | FAIL    |
| SB-UST-5  | 0.02                     | 0.4           | 3.2                                    | 56                                       | 5.84                                        |                        |           |                              |                       | 37.1 | 35.00  | 85.68                                     | FAIL    |
| SB-UST-6  | 0.02                     | 0.4           | 3                                      | 87                                       | 8.68                                        |                        |           |                              |                       | 14.5 | 58.00  | 204.27                                    | FAIL    |
| SB-IND-7  | 0.02                     | 0.4           | 250                                    | 8600                                     | 8.2                                         |                        |           |                              |                       | 9.1  | 68.80  | 26957.84                                  | FAIL    |

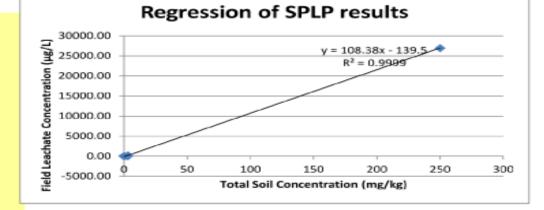
#### SPLP RESULTS for

OPTION 1a: All adjusted leachate concentrations are below the leachate criterion OPTION 1a NOT VALID

OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard THE LOWEST SOIL CONCENTRATION FAILED, USE OPTIONS 2 OR 3

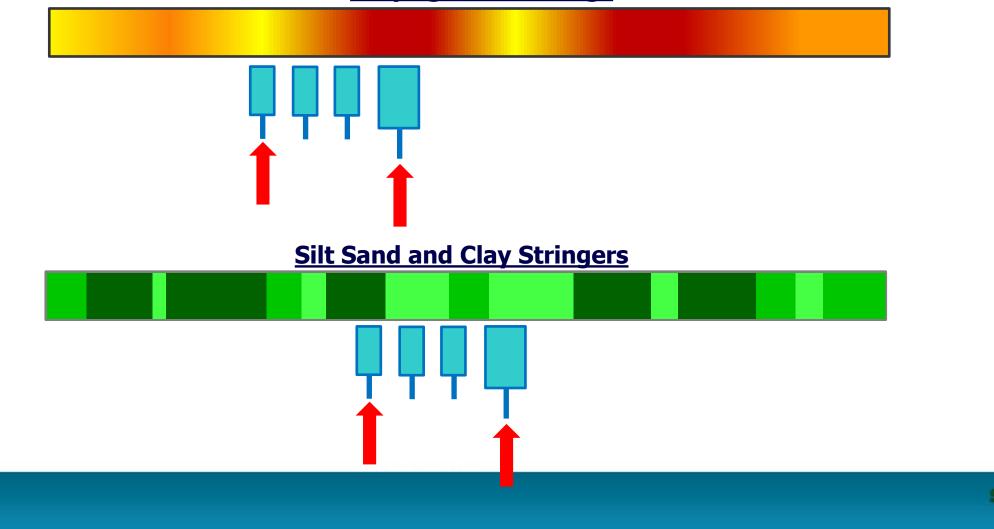
OPTION 2: Remediation standard using site-specific Kd value Kd ratio = 720634.92, USE MINIMUM Kd Kd USED FOR CALCULATING STANDARD = . L/kg result before rounding = 0.0041 mg/kg REMEDIATION STANDARD = 0.005 mg/kg (controlled by soil PQL)

**OPTION 3: Remediation standard using linear regression** 


Number of points = 5

(points were eliminated because leachate concentrations were not above the aqueous reporting limit) Soil concentration midrange = 125. Number of points above midrange = 1 Enough points above midrange? NO

R-Square high enough? YES


Leachate criterion within range of leachate concentrations? NO

OPTION 3 NOT VALID



### Negative Kd Value Possible Cause - Mismatched Samples

**Varying PID Readings** 



| concern:<br>Case number:<br>Sampling date: |                          | 8/3/2015 - 8/7 |                          |        |                                                                              | RE if chemical         | Reset<br>Spreadsh<br>al is not on dro<br>ternate GWQC | op-        | Print Results<br>Print to file               |            | se of I                    | RL vs.        | MDL        |  |  |
|--------------------------------------------|--------------------------|----------------|--------------------------|--------|------------------------------------------------------------------------------|------------------------|-------------------------------------------------------|------------|----------------------------------------------|------------|----------------------------|---------------|------------|--|--|
| Contaminant:                               | Benzo(a)a                |                |                          | NOTE:  |                                                                              |                        |                                                       |            |                                              |            |                            |               | <b>/</b> / |  |  |
| CAS No:                                    | ,/                       | 56-55-3        |                          |        | E ONE PAGE PER CONTAMINANT, do not leave empty rows between samples          |                        |                                                       |            |                                              |            |                            |               |            |  |  |
| Water solubility (mg/L)                    | V                        | 9.40E-03       |                          |        | o not enter samples with soil concentrations at or below the reporting limit |                        |                                                       |            |                                              |            |                            |               |            |  |  |
| Aqueous reporting limit (µg                |                          | 1.00E-01       |                          |        | hen leachate concentration is non-detect, enter the aqueous reporting limit  |                        |                                                       |            |                                              |            |                            |               |            |  |  |
| Soil reporting limit (mg/kg)               |                          | 2.00E-01       | <b>4</b> /′              |        | er site-specific dilution-attenuation factor (DAF) if desired                |                        |                                                       |            |                                              |            |                            |               |            |  |  |
| Health-based GWQC (µg/L                    |                          | 5.00E-02       | <u> </u>                 |        | Data entry ce                                                                |                        | skip rows)                                            | ر<br>ا     | <u>.                                    </u> | /          | /                          | <b>/</b> /    |            |  |  |
| DAF (20, or site-specific if               |                          |                | 4                        |        | Optional data                                                                | a entry                |                                                       | ()         | ()                                           | · ′        | /                          | /             |            |  |  |
| Leachate Criterion (µg/L):                 |                          | 1.00E+00       | 4                        |        | Calculated or locked cells                                                   |                        |                                                       |            |                                              | <u> </u>   | /                          | 1             |            |  |  |
| Henry's law constant (dime                 | ensionless)              | ) 1.37E-04     | 4                        |        | Indicates th                                                                 | at Alternat            | ive Remedi                                            | ation Star | ndard needs t                                | to be recr | alculated                  | /             |            |  |  |
|                                            | J                        | <u> </u>       | ()                       | ()     | I                                                                            |                        |                                                       | I          |                                              | <u> </u>   | /                          | 1             |            |  |  |
|                                            | Soil                     | Leachate       | Total Soil               | SPLP   | Final pH of                                                                  | 1                      | Option                                                | nal data   | ,                                            | ·′         | %                          | Field         |            |  |  |
| Sample ID                                  | sample<br>weight<br>(kg) | Volume<br>(L)  | Concentration<br>(mg/kg) | (µg/L) | Leachate<br>(except<br>VOCs)                                                 | Sampling<br>Depth (ft) |                                                       |            | Organic<br>Carbon (%)                        |            | Contaminant<br>in Leachate | concentration |            |  |  |
| RISB-8 (1.5-2)                             | 0.1                      | 2              | 0.95                     | 0.1    |                                                                              |                        |                                                       |            |                                              | 9480.0     | 0.21                       | 0.10          | PASS       |  |  |
| RISB-13 (1.5-2)                            | 0.1                      | 2              | 22                       | 0.23   | 9.4                                                                          |                        |                                                       |            |                                              | 95632.2    | 0.02                       | 0.23          | PASS       |  |  |
| RISB-19 (0.5-1)                            | 0.1                      | 2              | 92                       | 1.3    | 10.6                                                                         |                        |                                                       |            |                                              | 70749.2    | 0.03                       | 1.30          | FAIL       |  |  |
| RISB-1 (1-1.5)                             | 0.1                      | 2              | 171                      | 1.8    | 9.67                                                                         |                        |                                                       |            | 7                                            | 94980.0    | 0.02                       | 1.80          | FAIL       |  |  |
|                                            | ]                        |                |                          |        |                                                                              | RL Us                  | ed = Lo                                               | JW Kd      |                                              | ('         | /                          | /             |            |  |  |

#### SPLP RESULTS for

OPTION 1a: All adjusted leachate concentrations are below the leachate criterion **OPTION 1a NOT VALID** 

OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard

#### **REMEDIATION STANDARD = 22 mg/kg**


#### OPTION 2: Remediation standard using site-specific Kd value

Kd ratio = 10.09, USE MINIMUM Kd Kd USED FOR CALCULATING STANDARD = 9480. L/kg result before rounding = 9.4802 mg/kg **REMEDIATION STANDARD = 9 mg/kg** 

#### OPTION 3: Remediation standard using linear regression

Number of points = 3 (points were eliminated because leachate concentrations were not above the aqueous reporting limit) Soil concentration midrange = 96.5 Number of points above midrange = 1 Enough points above midrange? NO

- R-Square high enough? YES
- Leachate criterion within range of leachate concentrations? YES
- OPTION 3 NOT VALID



#### **Regression of SPLP results**

| Case name/area of<br>concern:<br>Case number:<br>Sampling date: | BaA Test                 | 8/3/2015 - 8/ | /7/2015       |                                                                              | CALCU<br>SITE SP<br>IGW STA                                                     | PECIFIC          | Reset<br>Spreadshe | heet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Print Results                         |                                       | se of F     | RL vs. I                              | MDL                                   |
|-----------------------------------------------------------------|--------------------------|---------------|---------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-------------|---------------------------------------|---------------------------------------|
| Contaminant:                                                    |                          |               |               | NOTE:                                                                        | CLICK HERE if chemical is not on drop-<br>down list, or to enter alternate GWQC |                  | Print to file      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       |             |                                       |                                       |
| CAS No:                                                         | T                        | 56-55-3       |               | USE ONE PAGE                                                                 | PER CONT                                                                        | AMINANT.         | do not leave       | empty ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ws betweer                            | a samples                             |             |                                       | -    <b>7</b>                         |
| Water solubility (mg/L)                                         | <b>F</b>                 | 9.40E-03      |               | Do not enter sar                                                             |                                                                                 |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       | +           |                                       | - () <b>r</b>                         |
| Aqueous reporting limit (µg                                     | /g/L):                   | 1.00E-01      |               | When leachate concentration is non-detect, enter the aqueous reporting limit |                                                                                 |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       | ľ           |                                       |                                       |
| Soil reporting limit (mg/kg)                                    |                          | 2.00E-01      |               |                                                                              | Enter site-specific dilution-attenuation factor (DAF) if desired                |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       |             | · · · · · · · · · · · · · · · · · · · |                                       |
| Health-based GWQC (µg/l                                         |                          | 5.00E-02      |               |                                                                              |                                                                                 | cells (do not s  |                    | The second secon |                                       | · · · · · · · · · · · · · · · · · · · | /           |                                       | · · · · · · · · · · · · · · · · · · · |
| DAF (20, or site-specific if                                    |                          |               | /             |                                                                              | Optional data entry                                                             |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                     |                                       |             |                                       |                                       |
| Leachate Criterion (µg/L):                                      |                          | 1.00E+00      | //            |                                                                              | Calculated or locked cells                                                      |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · | /                                     |             |                                       |                                       |
| Henry's law constant (dime                                      | (ensionless)             | 1.37E-04      | 4             | //                                                                           | Indicates that Alternative Remediation Standard needs to                        |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to be recr                            | alculated                             |             |                                       |                                       |
| ,                                                               |                          | 1 /           | /             |                                                                              | I                                                                               |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <u> </u>                              | /           |                                       |                                       |
|                                                                 | Soil                     | Leachate      | Total Soil    | SPLP                                                                         | Final pH of                                                                     | of Optional data |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     | ſ '                                   | %           | Field                                 |                                       |
| Sample ID                                                       | sample<br>weight<br>(kg) | Volume<br>(L) | Concentration | Leachate<br>Concentration<br>(µg/L)                                          |                                                                                 | Compline         | Soil Type          | Organic<br>Carbon<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Organic<br>Carbon (%)                 |                                       | Contaminant | concentration                         | Pass or<br>fail?                      |
| RISB-8 (1.5-2)                                                  | 0.1                      | 2             | 0.95          | 0.02                                                                         |                                                                                 |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 47480.0                               | 0.04        | 0.02                                  | PASS                                  |
| RISB-13 (1.5-2)                                                 | 0.1                      | 2             | 22            | 0.23                                                                         | 9.4                                                                             |                  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 95632.2                               | 0.02        | 0.23                                  | PASS                                  |
| RISB-19 (0.5-1)                                                 | 0.1                      | 2             | 92            | 1.3                                                                          | 10.6                                                                            |                  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 70749.2                               | 0.03        | 1.30                                  | FAIL                                  |
| RISB-1 (1-1.5)                                                  | 0.1                      | 2             | 171           | 1.8                                                                          | 9.67                                                                            |                  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 94980.0                               | 0.02        | 1.80                                  | FAIL                                  |
| SPLP RESULTS for                                                |                          |               |               |                                                                              | MDL '                                                                           | Used =           | Consiste           | ent Kd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                       |             |                                       |                                       |

#### SPLP RESULTS for

OPTION 1a: All adjusted leachate concentrations are below the leachate criterion OPTION 1a NOT VALID

OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard

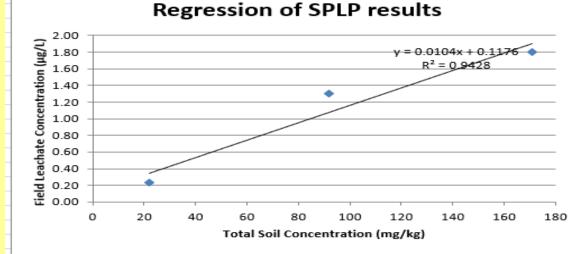
REMEDIATION STANDARD = 22 mg/kg

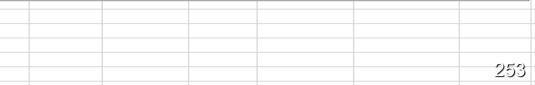
OPTION 2: Remediation standard using site-specific Kd value

Kd ratio = 2.01, AVERAGING Kds OK Kd USED FOR CALCULATING STANDARD = 77210.35 L/kg result before rounding = 77.2105 mg/kg REMEDIATION STANDARD = 77 mg/kg

**OPTION 3: Remediation standard using linear regression** 

Number of points = 3 (points were eliminated because leachate concentrations were not above the aqueous reporting limit) Soil concentration midrange = 96.5


Number of points above midrange = 1


Enough points above midrange? NO

R-Square high enough? YES

Leachate criterion within range of leachate concentrations? YES

OPTION 3 NOT VALID





### Report

- Need ARS Form and applicable calculator spreadsheets
- Thorough support documentation Important for all ARS-MGW evaluation methods
- Good chance NJDEP will review, regardless if "pre-approval" is required





#### Questions

- What if you don't have 3 or more samples with exceedances of Default SRS-MGW?
- Applicability of SRS-MGW Unsaturated zone vs. saturated zone





# **Questions?**





## BREAK





## ARS-MGW Development Using a Site-Specific Dilution Attenuation Factor

Mary Anne Kuserk, Chief Bureau of Ground Water Pollution Abatement <u>maryanne.kuserk@dep.nj.gov</u>





The discussion of the DAF is outlined Section 5 in the Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Ground Water Exposure Pathway

www.nj.gov/dep/srp/guidance/srra/ars migration to gw guidance.pdf





#### • What is the DAF?

- As infiltrating precipitation containing leached contaminant recharges an aquifer at the water table, it mixes with ground water, reducing the leachate contaminant concentration
- The amount of dilution and the resulting ground water contaminant concentration can be calculated with a *DAF*





- The default DAF the Department calculated is 20
  - This assumes an aquifer hydraulic gradient of 0.003 and an aquifer hydraulic conductivity of 142 ft/day (51865 ft/yr)
  - See Migration to Ground Water Basis and Background Document <u>https://www.nj.gov/dep/srp/guidance/rs/</u>
- If site-specific values for either of these parameters are higher than these default values, a *DAF* higher than the default value of 20 may be calculated





- The DAF is used in various ARS- MGW calculations including:
  - MGW Soil Leachate Remediation Standards
  - Soil-Water Partitioning Equation
  - SPLP
  - SESOIL

ARS-MGW developed site-specific DAF require **pre-approval** from the Department prior to use





## **DAF Equation**

$$DAF = 1 + \frac{K^* i^* d}{I^* L}$$

- DAF = dilution-attenuation factor (unitless)
  K = aquifer hydraulic conductivity (m/yr)
  i = aquifer hydraulic gradient (unitless)
- d = mixing zone depth (m)
  I = infiltration rate (m/yr)
  L = length of area of concern parallel
  to ground water flow (m)





## **Calculating Site-Specific DAF**

- Site-Specific Parameters
  - L = Length of the Plume
  - I = Infiltration Rate
  - GW Parameters: K = Hydraulic Conductivity
    - i = Gradient



## **Calculating Site-Specific DAF**

- Length of Plume must be adjusted for actual site conditions
- Infiltration Rate will not consider low or impermeable covers





# **Calculating Site-Specific DAF**

 Hydraulic Conductivity and Gradient must be determined from field measurements pursuant to the Department's Ground Water Technical Guidance

• Because *K* and *i* are closely linked parameters affecting ground water velocity, they <u>must be adjusted together</u>





#### **DAF Spreadsheet**

#### NJDEP 2021 Migration to Ground Water Dilution-Attenuation Factor Calculator

| Site Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  | Date:                        | Calculated or locked cell        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------|----------------------------------|
| Additional Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | Evaluated by:                | Required data entry              |
| $DAF = 1 + \frac{K^* i^* d}{I^* L}  d = (0.0112^* L^2)^{0.5} + d_a^* \{1 - \exp[(-L^2 L^2)^{0.5} + \frac{1}{2} + 1$ |  | $L*I)/(K*i*d_a)], d \le d_a$ | Optional data entry/modification |

|           |                                                            |       |               | Converted | to metric:    |
|-----------|------------------------------------------------------------|-------|---------------|-----------|---------------|
| Parameter | Definition                                                 | Value | units         | Value     | units         |
| L         | Length of Area of Concern<br>Parallel to Ground Water Flow | 100   | ft            | 30.5      | m             |
| da        | Aquifer Thickness                                          | 11.5  | ft            | 3.5       | m             |
| 1         | Infiltration Rate                                          | 11    | in/yr         | 0.28      | m/yr          |
| К         | Aquifer Hydraulic<br>Conductivity                          | 51865 | ft/yr         | 15808     | m/yr          |
| i         | Gradient                                                   | 0.003 | dimensionless | 0.003     | dimensionless |
| d         | Mixing Zor                                                 | 3.4   | m             |           |               |
| DAF       | Dilution-Attenu                                            | 20    | dimensionless |           |               |

Instructions

Reset

Back to MGW Site-Specific Menu

Exit

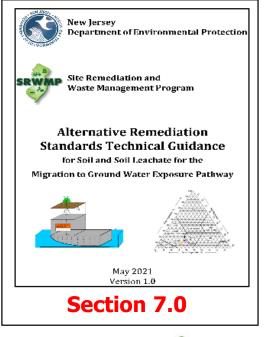
NOTES: (click outside box when finished)

#### **Submittals**

- Copy of the Spreadsheet
- Technical justification and data used to determine input parameters






# **Thank You!**





# SESOIL Seasonal Soil Compartment Model

William Carp Bureau of Environmental Evaluation and Risk Assessment william.carp@dep.nj.gov





## Seasonal Soil Compartment Model (SESOIL)

- May be used to demonstrate that a specified existing or proposed concentration distribution of contaminant in soil will not result in future contamination of ground water above the GWRS.
  - Contaminant concentration distribution may then be used to define an ARS, for the ARS-MGW.
- ARS-MGW developed under this option will typically be a <u>depth-dependent vertical concentration distribution</u>, rather than a single number.
- Appropriately delineated unsaturated soil contamination must also be demonstrated.



### **SESOIL Implementation**

- Use of SEVIEW software package (ESCI, 2017) for modeling
  - incorporates a convenient user interface for preparing and processing SESOIL model input and output

#### Prior approval from Department required before applying the ARS-MGW that are developed using SESOIL







#### **SESOIL** can be used for three scenarios:

- Can model existing concentrations
- Can model concentrations that will remain behind after remediation
- Can model theoretical maximum concentrations







#### **SESOIL** is most useful when:

- there are contaminants with lower mobility that are located a significant distance above the water table and will not reach the water table in 100 years
- there are degradable volatile hydrocarbons at concentrations that do not greatly exceed the ARS-MGW
- there are volatile contaminants that do not greatly exceed the SRS-MGW and the soil texture at the site has been characterized





## **SESOIL Model Notations**

- SESOIL model may be used whether the ground water is currently contaminated or not. However, <u>no additional</u> ground water contamination from contaminants located in the unsaturated zone is permitted.
- Sites with impermeable caps must be modeled as if no cap is present
  - Because of this requirement, the ARS-MGW determined using the SESOIL model allows for unrestricted land use (capped or uncapped)





### **Test Your Knowledge**

#### **True or False:**

SESOIL model may be used whether the ground water is currently contaminated or not.

A. True

B. False

### **Test Your Knowledge**

#### **True or False:**

SESOIL model may be used whether the ground water is currently contaminated or not.

#### A. True

#### B. False

## SESOIL Model Notations (cont'd)

- The Department has assigned default input values for most of the parameters used in the SESOIL model. Several of these may be adjusted on an AOC- or site-specific basis. The two parameters below, must be determined using AOC or site-specific information:
  - the contaminant concentration distribution in the unsaturated zone
  - the depth to ground water





# SESOIL Model Notations (cont'd)

#### **Allowed site-specific parameters**

- Soil texture (default is sand) If actual texture measured, allows turning on volatilization (important for VOCs). The leaching rate may also be reduced for soil textures other than sand.
- Percent soil organic carbon (default is 0.2%). May be layer specific. Higher soil organic carbon will slow leaching rate and reduce SESOIL leachate concentrations for organics.
- 1 month degradation half-life for BTEX and other non-PAH hydrocarbons – <u>greatly reduces</u> BTEX leachate concentrations

#### Site-specific depth to ground water <u>must</u> be used

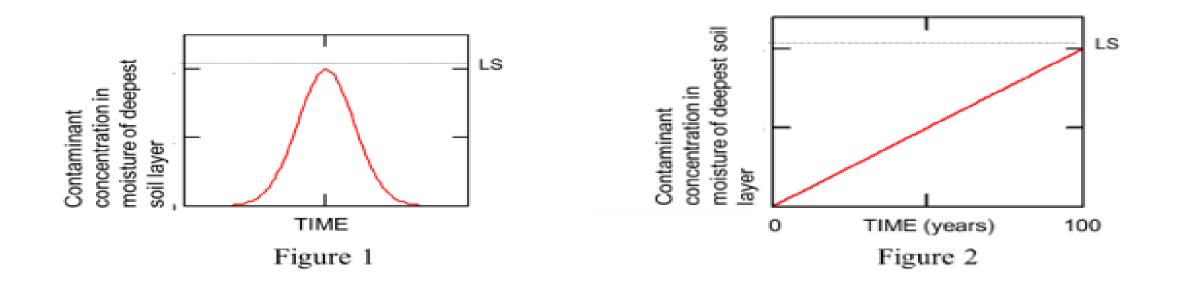


# SESOIL Model Notations (cont'd)

#### **Allowed site-specific parameters**

Site-specific parameters not discussed in this SESOIL presentation

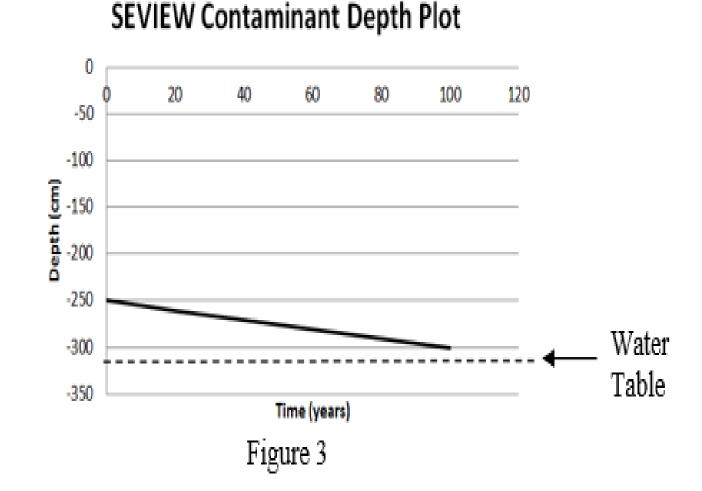
- Site-specific leachate criterion (from site-specific DAF). See SPLP and DAF sections of guidance
- Site-specific Kd from SPLP test reduces leaching rate and leachate concentrations. See SPLP guidance






# **SESOIL and Ground Water Impact**

SESOIL is used in two ways to show that GW will not be impacted:


1. To see if maximum predicted leachate concentration from SESOIL does not exceed Soil Leachate Remediation Standard



# SESOIL and Ground Water Impact (cont'd)

2. To demonstrate that the contaminant will not reach ground water over a 100-year time period

Contaminant does not quite reach the water table, therefore OK



### **SESOIL versus combined SESOIL/AT123D**

|                                                  | SESOIL                                            | SESOIL/AT123D                                               |  |  |
|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--|--|
| Media                                            | Unsaturated soil                                  | Unsaturated soil and ground water                           |  |  |
| Objective                                        | $Calculated leachate < MGW_{LEACHATE}$            | GWRS achieved within CEA timeframe                          |  |  |
| CEA Required?                                    | No                                                | Yes                                                         |  |  |
| Impermeable Cap?                                 | May be present<br>(but modeled as if not present) | Cannot be present<br>(for duration of CEA)                  |  |  |
| Contaminants                                     | All                                               | All, but typically used only for mobile contaminants (VOCs) |  |  |
| Site-specific testing of soil/aquifer parameters | Not required                                      | Some required                                               |  |  |

## **SESOIL versus combined SESOIL/AT123D**

#### SESOIL

- Models maximum leachate at bottom of vadose zone
- Concentration-based endpoint

#### SESOIL/AT123D

- Models how quickly predicted ground water concentrations decrease with time
- Time-based endpoint





# **Thank You!**





# **SESOIL/AT123D Models**

Steve Posten, LSRP, Vice President Wood Environment & Infrastructure Solutions, Inc. Licensed Site Remediation Professional Association (LSRPA) <u>stephen.posten@amecfw.com</u>







New Jersey

SRWMP Site Remediation and

Department of Environmental Protection

Waste Management Program

Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Ground Water Exposure Pathway

> May 2021 Version 1.0

Section 8.0

# **SESOIL/AT123D**

- SESOIL = 1D (vertical) vadose zone transport model
- AT123D = 2/3D (horizontal) saturated zone transport model
  - Key aspect: separate contaminant load can be entered at each time step, allowing for linkage with SESOIL
- AT123D is an acronym for the "Analytical Transient 1-, 2- and 3-Dimesional Simulation of Waste Transport in the Aquifer System"
- Originally developed in 1981 at the Oak Ridge National Laboratory (ORNL) for evaluation of RCRA/CERCLA sites
- Model results have been shown to be comparable to more sophisticated simulations using the numerical MODFLOW (flow) and MT3D (transport) models







#### SESOIL

- One dimensional vertical infiltration model
- Applied alone (without AT123D) generally when ground water is not impacted, and a "clean" zone exists between contaminated soil water table
- Calculates concentration at bottom of soil column based on vertically distributed contaminant concentrations
- Determines whether existing contamination will impact ground water, or can allow for back-calculation of acceptable soil contaminant distribution



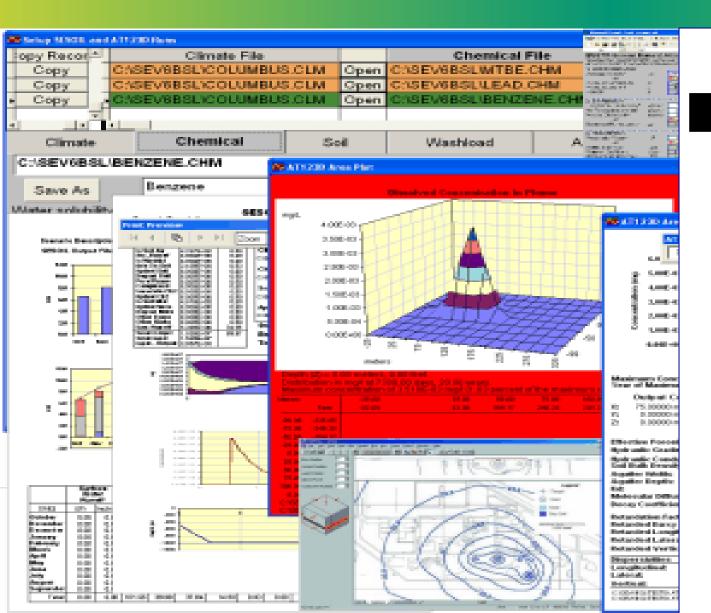


- Combines one-dimensional vertical infiltration model (SESOIL) with twodimensional ground water transport model (AT123D)
- Used when ground water is already impacted
- AT123D incorporates leachate concentration from SESOIL to define ground water source mass, and then applies advection, dispersion, aquifer matrix sorption and biodegradation to the transport of dissolved contaminants





#### SESOIL/AT123D can be used in two ways:


- Determine whether existing contamination in the vadose zone will impact GW; or
- Model proposed contaminant concentrations that will be left behind after proposed remediation, to determine if the proposed remediation plan is acceptable.

#### In both cases:

- Ground water quality is compared to GWQS within specific timeframes at specific compliance points, and
- Vadose zone contamination represents a depth discrete distribution, not a specific value







#### SEVIEW

#### Groundwater and Vadose Transport With AT123D and SESOIL

Version 7.1 November 2014

User's Guide for Microsoft® Windows

> SEVIEW, Ver. 7.1 ESCI, LLC



Fax: 608 285-5131

www.seview.com

Environmental Software Consultants Inc, LLC P.O. Box 2622 Madison, Wisconsin 53701-2622 Phone: 608 240-9878

Copyright© 1994 - 2014 Environmental Software Consultants Inc, LLC

- Requirements for Application of AT123D:
  - Groundwater quality is currently degraded by contamination migrating from soil at the area of concern (AOC)
  - AOC may not be capped with low permeability cap
    - SESOIL/AT123D model relies on infiltration, ground water recharge and volatilization to attenuate chemicals; these processes are inhibited when a site is capped.
  - Receptor Evaluation completed and impacts addressed





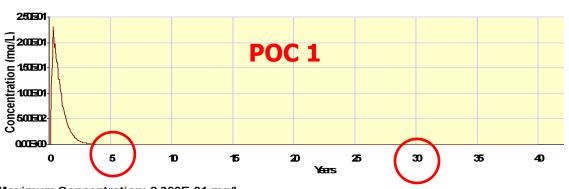
- Requirements for Application of AT123D:
  - Free and residual product must be treated or removed to the extent practicable or contained when treatment or removal is not practicable
  - Soil and ground water contamination has been appropriately delineated, an adequate ground water monitoring network is installed, and long-term monitoring is performed in accordance with the requirements of the sitespecific remedial action permit for ground water
  - In accordance with N.J.A.C. 7:26C-7.9(f), ground water monitoring must demonstrate that contaminant concentrations are below the applicable standards in order to achieve site closure





- Model Inputs
  - Size and location of source
  - Climate data from weather station located proximal to site
  - Chemical-specific parameters from DEP database
  - Distribution coefficient (K<sub>d</sub>); default or site-specific (e.g., SPLP)
  - Soil texture (grain size analysis)
  - SESOIL-specific soil parameters (based on soil texture analysis)
  - SESOIL-specific vertical contaminant distribution
  - Soil organic carbon  $(F_{oc})$
  - Depth to water table
  - Hydraulic conductivity
  - Hydraulic gradient
  - Effective porosity (default or site-specific)
  - Bulk density (default or site-specific)
  - Dispersion (longitudinal, transverse, vertical)





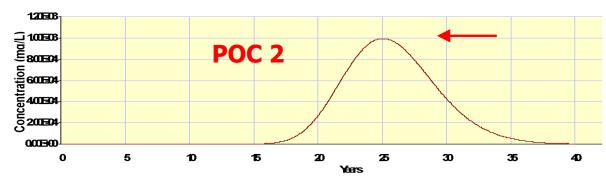

- Model Outputs
  - Contaminant concentrations in groundwater over time at specified points of compliance (POC):
    - <u>POC 1</u>: A location at the centerline of the plume at surface of the water table at the downgradient edge of the AOC.
    - <u>POC 2</u>: A location at the centerline of the plume at the maximum extent of the plume at the surface of the water table.
  - Acceptance Criteria:
    - Contaminant concentrations are below the GWQS at all POCs at the end of the model simulation period (= CEA duration).





#### AT123D Point of Compliance Report




Maximum Concentration: 2.300E-01 mg/L Year of Maximum Concentration: 0.33

#### **Output Coordinates**

C:\SEVIEW63\WSFINAL\_.ATO

| Ծաւթւ                                                                       | Output Coordinates |           |        |           |             |           |              |         |           |    |
|-----------------------------------------------------------------------------|--------------------|-----------|--------|-----------|-------------|-----------|--------------|---------|-----------|----|
| X: 8.60000                                                                  | m                  | 28.2149 f | t Ou   | Itpu      | t Time Step | : 0.0833  | years 1      | .0005 m | onths     |    |
| Y: 0.00000                                                                  | m                  | 0.0000 f  | t Init | tial      | Load (mg/L  | ): 0.000  | 00E+00       |         |           |    |
| Z: 0.00000                                                                  | m                  | 0.0000 f  | t Init | tial      | Load (kg):  | 0.730     | 00E+03       |         |           |    |
| Input Parameters                                                            |                    |           |        |           |             |           |              |         |           |    |
| Porosity:                                                                   |                    | 0.30000   | So     | il O      | rganic Carb | on Cont   | ent (percen  | t):     | 0.2000    | 00 |
| Hydraulic Gradient:                                                         |                    | 0.00530   | Са     | rbo       | n Adsorptic | n Coeff.  | (ug/g)/(ug/i | nl):    | 0.1550E+0 | 33 |
| Hydraulic Cond                                                              | uctivity: 8        | .890E-01  | m/hr   | -         | 2.469E-02   | cm/sec    |              |         |           |    |
| Soil Bulk Density:                                                          |                    | .580E+03  | kg/m   | n3        | 1.580E+00   | g/cm3     |              |         |           |    |
| Aquifer Width:                                                              |                    | Infinite  | m      |           | Infinite    | ft        |              |         |           |    |
| Aquifer Depth:                                                              |                    | .700E+00  | m      |           | 2.854E+01   | ft        |              |         |           |    |
| Kd:                                                                         | 3                  | 3.100E-04 | m3/k   | g         | 3.100E-01   | (ug/g)(u  | g/ml)        |         |           |    |
| Molecular Diffusion:                                                        |                    | .952E-06  | m2/h   | nr        | 8.200E-06   | cm2/sec   | ;            |         |           |    |
| Decay Coefficie                                                             | nt: 0.             | .000E+00  | 1/hr   |           | 0.000E+00   | 1/day     |              |         |           |    |
| Retardation Factor: 2.633E+00                                               |                    |           |        |           |             |           |              |         |           |    |
| Retarded Darcy Velocity:                                                    |                    |           |        | 5.966E-03 | m2/hr       | 1.657E-02 | cm2/se       | ac      |           |    |
| Retarded Longitudinal Disp. Coefficient                                     |                    | ient:     |        | 7.696E-02 |             |           |              |         |           |    |
| Retarded Lateral Dispersion Coefficient:                                    |                    |           |        | 7.699E-03 |             |           |              |         |           |    |
| Retarded Vertical Dispersion Coefficient: 7.733E-04 m2/hr 2.148E-03 cm2/sec |                    |           |        |           |             |           |              |         |           |    |
|                                                                             |                    |           |        |           |             |           |              |         |           |    |
| Dispersivities                                                              | Meters             | Feet      | _      | Loa       | nd Begin (m | ) End (   | (m) Begin    | ı (ft)  | End (ft)  |    |
| Longitudinal:                                                               | 1.290E+01          | 4.232E+0  | 1      | X:        | -8.600E+0   | D 8.600E  | E+00 -2.821  | E+01 2. | .821E+01  |    |
| Lateral:                                                                    | 1.290E+00          | 4.232E+0  | 0      | Y:        | -8.600E+0   | 0 8.600E  | E+00 -2.821  | E+01 2. | .821E+01  |    |
| Vertical:                                                                   | 1.290E-01          | 4.232E-0  | 1      | _Z:       | 0.000E+0    | 0.000E    | E+00 0.000   | E+00 0. | 000E+00   |    |
| C:\SEVIEW63\WSFINALATI                                                      |                    |           |        |           |             |           |              |         |           |    |
|                                                                             |                    |           |        |           |             |           |              |         |           |    |

#### **AT123D Point of Compliance Report**



Maximum Concentration: 9.940E-04 mg/L Year of Maximum Concentration: 24.92

#### Output Coordinates

| eutput econe                  | macoo              |                                                  |  |  |  |  |  |  |  |
|-------------------------------|--------------------|--------------------------------------------------|--|--|--|--|--|--|--|
| X: 1307.00000 m               | 4288.0056 ft Out   | put Time Step: 0.0833 years 1.0005 months        |  |  |  |  |  |  |  |
| Y: 0.00000 m                  | 0.0000 ft Initi    | ial Load (mg/L): 0.0000E+00                      |  |  |  |  |  |  |  |
| <b>Z:</b> 0.00000 m           | 0.0000 ft Initi    | ial Load (kg): 0.7300E+03                        |  |  |  |  |  |  |  |
| Input Parameters              |                    |                                                  |  |  |  |  |  |  |  |
| Porosity:                     | 0.30000 <b>Soi</b> | I Organic Carbon Content (percent): 0.20000      |  |  |  |  |  |  |  |
| Hydraulic Gradient:           |                    | bon Adsorption Coeff. (ug/g)/(ug/ml): 0.1550E+03 |  |  |  |  |  |  |  |
| Hydraulic Conductivity:       | 8.890E-01 m/hr     | 2.469E-02 cm/sec                                 |  |  |  |  |  |  |  |
| Soil Bulk Density:            | 1.580E+03 kg/m3    | 3 1.580E+00 g/cm3                                |  |  |  |  |  |  |  |
| Aquifer Width:                | Infinite m         | Infinite ft                                      |  |  |  |  |  |  |  |
| Aquifer Depth:                | 8.700E+00 m        | 2.854E+01 ft                                     |  |  |  |  |  |  |  |
| Kd:                           | 3.100E-04 m3/kg    | g 3.100E-01 (ug/g)(ug/ml)                        |  |  |  |  |  |  |  |
| Molecular Diffusion:          | 2.952E-06 m2/hr    | 8.200E-06 cm2/sec                                |  |  |  |  |  |  |  |
| Decay Coefficient:            | 0.000E+00 1/hr     | 0.000E+00 1/day                                  |  |  |  |  |  |  |  |
| Retardation Factor: 2.633E+00 |                    |                                                  |  |  |  |  |  |  |  |
| Retarded Darcy Velocity       | <i>.</i> -         | 5.966E-03 m2/hr 1.657E-02 cm2/sec                |  |  |  |  |  |  |  |
| Retarded Longitudinal         |                    |                                                  |  |  |  |  |  |  |  |
| Retarded Lateral Disper       | -                  |                                                  |  |  |  |  |  |  |  |
| Retarded Vertical Dispe       |                    |                                                  |  |  |  |  |  |  |  |
|                               |                    |                                                  |  |  |  |  |  |  |  |
| Dispersivities Meters         | ; Feet <u>I</u>    | _oad Begin (m) End (m) Begin (ft) End (ft)       |  |  |  |  |  |  |  |
| Longitudinal: 1.290E+0        | 01 4.232E+01       | X: -8.600E+00 8.600E+00 -2.821E+01 2.821E+01     |  |  |  |  |  |  |  |
| Lateral: 1.290E+0             | 00 4.232E+00       | Y: -8.600E+00 8.600E+00 -2.821E+01 2.821E+01     |  |  |  |  |  |  |  |
| Vertical: 1.290E-0            | 01 4.232E-01       | Z: 0.000E+00 0.000E+00 0.000E+00 0.000E+00       |  |  |  |  |  |  |  |
| C:\SEVIEW63\WSFINAL_ATI       |                    |                                                  |  |  |  |  |  |  |  |
|                               |                    |                                                  |  |  |  |  |  |  |  |

C:\SEVIEW63\WSFINAL\_.ATO

- Reporting requirements
  - SESOIL related:
    - Table of contaminant distribution with depth
    - 4 model output pages documenting inputs and outputs
  - AT123D related:
    - Delineated groundwater plume indicating source locations
    - Table of source concentration data
    - Model generated point of compliance report for each POC
    - Electronic submission: Model output ("project") file in \*.prj format





- Closure requirements:
  - A Department approved ground water monitoring program designed to monitor the predictions of the AT123D model must be implemented.
  - If observed ground water concentrations have not decreased at the end of the CEA, soil sampling may be required. Consult the Monitored Natural Attenuation Technical Guidance Document for further details.

Note: Compliance averaging of soil concentrations is not applicable to SESOIL or AT123D modeling at this time

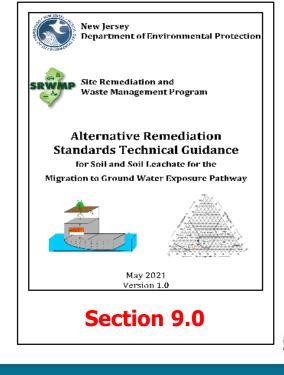




#### **Thank You!**






## **Questions?**





#### Alternative Remediation Standards Immobile Chemicals Option for the Migration to Ground Water Exposure Pathway

Ann Charles, Research Scientist Bureau of Environmental Evaluation and Risk Assessment Ann.Charles@dep.nj.gov





#### **Immobile Chemicals: Option Overview**

- Section 9: ARS-MGW Guidance document
- Immobile chemicals option a narrative standard, not a numerical standard
- Specific list of eligible chemicals
- Evaluate after RI completed, delineation completed
- Requires 2-foot clean zone between contamination and seasonally high water table
- There are site conditions where Immobile Chemicals Option cannot be used



#### How the Immobile Chemicals were Determined

- NJDEP performed contaminant transport model
- Model run using default properties for calculating the SRS-MGW
- Sandy loam soil
- Chemical needed to be transported less than two feet over 100 years
- Immobile chemicals list has been updated from prior guidance





#### **List of Immobile Chemicals**

- Lead
- Aldrin
- Benzo(a)anthracene
- Bis(2-ethylhexyl phthalate)
- Chlordane
- Dichlorodiphenyldichloroethane (DDD)

- Dichlorodiphenyldichloroethylene (DDE)
- Dichlorodiphenyltrichloroethane (DDT)
- PCBs
- 2,3,7,8-tetrachlorodibenzo-p-dioxin
- Toxaphene





#### **Immobile Chemicals**

Site Conditions where option CANNOT be used:

- When site conditions are present that might increase the normal mobility of the contaminant
  - Examples:
    - Contaminant part of mixture
    - Co-solvent present
    - Soil pH altered from acids or bases

Reminder: Soil texture cannot be coarser than sandy loam



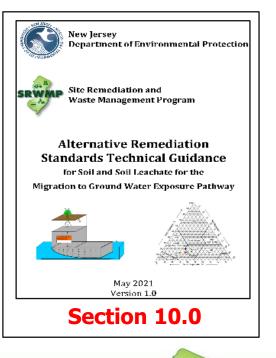


#### **Immobile Chemicals: Submittal Requirements**

- Sampling results:
  - including samples from 2-foot zone between contamination and seasonally high water table
- Analytical results tables
- Soil boring logs
- Evaluation of all conditions identified in the guidance






#### **Thank You!**





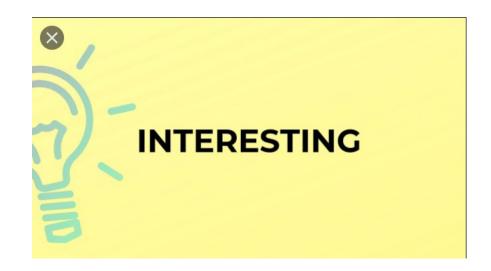
## Soil and Ground Water Data Evaluation

Dr. Swati Toppin, PhD, Rule Manager Bureau of Environmental Evaluation and Risk Assessment <u>swati.toppin@dep.nj.gov</u>



308




• **Narrative Standard**: found in Section 10.0 of the "Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Ground Water Exposure Pathway."

This means no numerical standard: – just that the pathway has been satisfactorily evaluated and needs no further action





This option uses current ground water data to arrive at a conclusion about soil contamination acceptability for the MGW exposure pathway







#### **Conditions:**

- Contamination is not due to recent discharge
- Highest contaminant levels are at the water table
- Ground water concentrations are below GWRS

#### All must apply!





To implement this option:

- Soil sampling with appropriate delineation to the applicable SRS-MGW or ARS-MGW
- Two rounds of groundwater sampling, 30 days apart





#### Site Soil and Ground Water Data Option Reporting Requirements

#### Supporting data should include:

- Table with soil and ground water data
- Methodology used to derive this
- History of site, especially with reference to the discharge

#### See guidance for further details





#### **Test Your Knowledge**

- Supporting data for the soil and ground water data option should include:
- A. Table with soil and ground water data
- B. Methodology used to derive this
- C. History of site, especially with reference to the discharge
- D. All of the above

#### **Test Your Knowledge**

## Supporting data for the soil and ground water data option should include:

#### A. Table with soil and ground water data

#### B. Methodology used to derive this

C. History of site, especially with reference to the discharge

#### **D.** All of the above

#### **Important Note**

Methodologies and models other than those in this guidance document may be submitted for the MGW exposure pathway

- all such will require DEP preapproval prior to use, and
- a detailed review may be necessary

Submission of a new model or methodology does not guarantee its approval for use





#### **Questions?**





## **Thank You for Attending!**

# **Please complete the Course Evaluation at:**

https://www.surveymonkey.com/r/NG73ZTP



