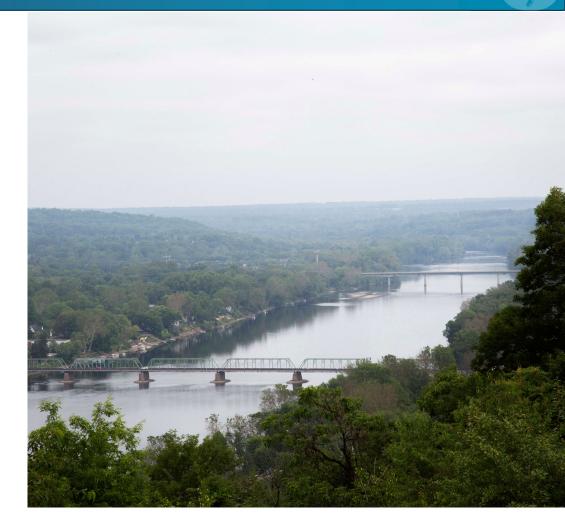
2024 New Jersey Statewide Water Supply Plan

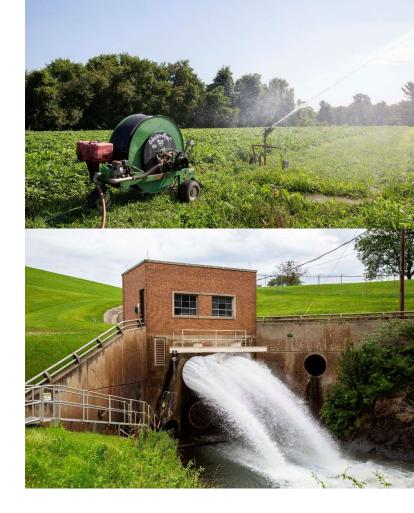

DRBC Advisory Committee on Climate Change: Current and Future Climate Implications December 17, 2024

This content was for discussion at the December 17, 2024, ACCC Meeting. Content may not be published or re-posted in whole or in-part without the DRBC's or the presenter's permission.

Presentation Outline

- Water Supply Planning in NJ
- Overview of the 2024 Plan
- NJ Climate Change Science Refresher
- Climate Change-Water Supply Analyses and Findings
 - Saltwater intrusion into aquifers and estuaries
 - Groundwater recharge
 - Reservoirs
- Water Supply Plan Response

Water Supply Planning



- 1981 Water Supply Management Act
 - Develop and periodically update a WSP
 - Historically focused on quantity
- 1982, 1996 and 2017 Plans
 - Numerous regional and statewide plans prior to 1982
- Fundamental Questions:
 - How much do we currently have and use?
 - How much will we need in the future?
 - What are the critical issues impacting supply?
 - What do we need to do to ensure adequate supply w/o unacceptable impacts?

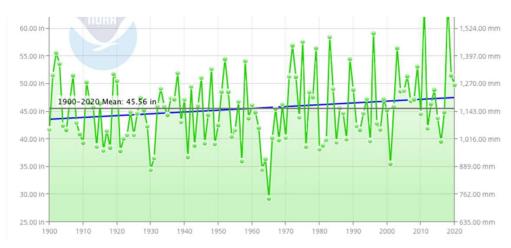
2024 NJ Statewide Water Supply Plan

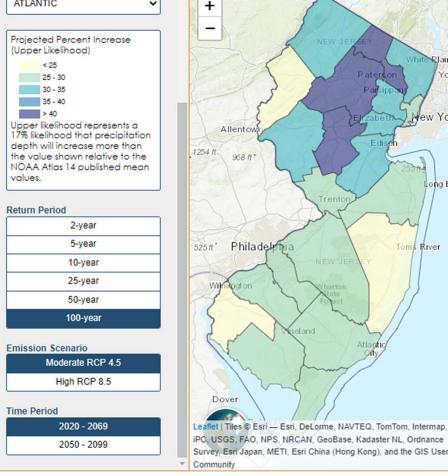
- 5-Year plan with 2050 planning horizon
- Addresses major comments on 2017 WSP
 - Lack of climate change evaluations
 - Limited public engagement and policy recommendations
- Major additions:
 - 5 more years of data
 - Climate change impacts to water availability
 - Statewide safe drinking water assessment
 - Environmental Justice/Overburdened Community water supply impacts
 - Detailed policy recommendations

NJ Climate Science: Precip

ATLANTIC

New Jersey Extreme **Precipitation Projection Tool**

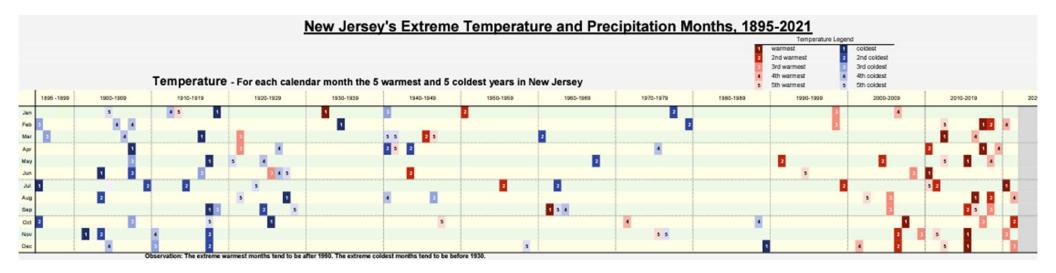

Yor


ew Yor

ong Br

Toms River

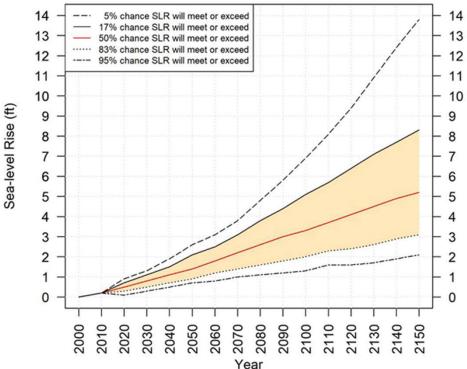
- Already receiving more annual precipitation
 - Receiving 3+ inches more than last century
 - 4% to 11% more by 2050
- South and coast and fall and spring wetter
- Larger events more frequent
- Subregions show more variability +-



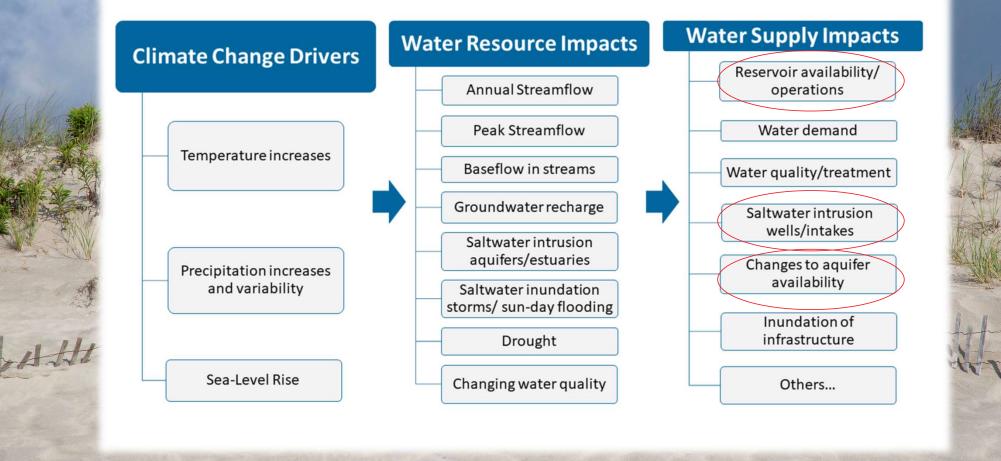
https://njprojectedprecipitationchanges.com/

NJ Climate Science: Temperature

- New Jersey is warming faster than the rest of the Northeast region and the world
- Since 1895, New Jersey's annual temperature has increased by 3.5°F
- Annual temperatures increasing by 4.1°F to 5.7°F by 2050
- Winters warming faster coupled with hotter summers



NJ Climate Science: Sea-Level Rise

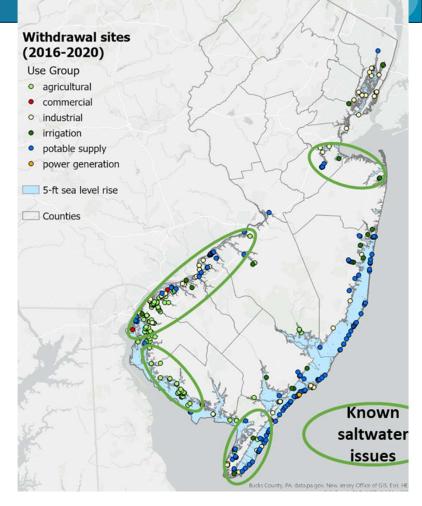

- Sea-levels are increasing at a greater rate in New Jersey than other parts of the world, in part due to:
 - Ice melt, thermal expansion, isostatic rebound, aquifer compaction, circulation, etc.
- By 2050, sea-level rise will likely rise between 1.4 and 2.1 feet.
 - Those levels increase to between 3.3 and 5.1 feet by the end of the century
 - "Sunny day flooding" will occur more often
- Hurricanes, Nor'easters, etc. likely to increase in frequency and severity

2020 NJ Scientific Report on Climate Change https://www.nj.gov/dep/climatechange/data.html

Climate Change and Water Supply

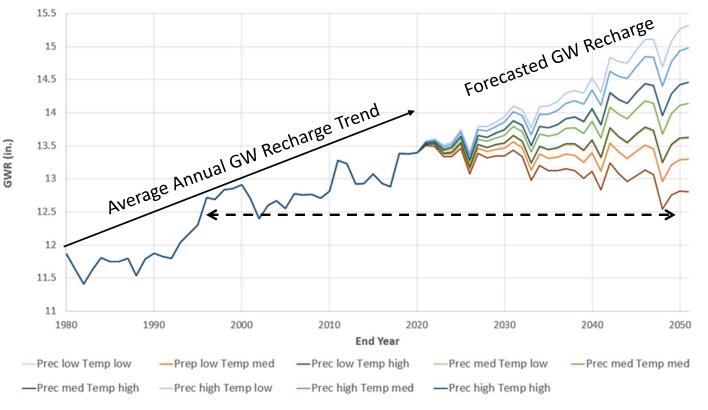
Climate Change Findings

Statewide water supply risks from climate change are manageable but only if the state continues to take actions to mitigate threats.


The greatest concerns are associated with **saltwater intrusion** in near ocean-bay unconfined aquifers and estuaries.

Local problems do/will occur, and **resilient infrastructure** will be critical to withstand extreme events.

Assessments include:


- Sea level rise and saltwater intrusion/inundation
 - 2 ft ~2050 and 5 ft ~2100
- Groundwater recharge
- Streamflow trends and reservoir safe yields
- Still to do:
 - water quality
 - drought
 - downscaling and seasonal impacts

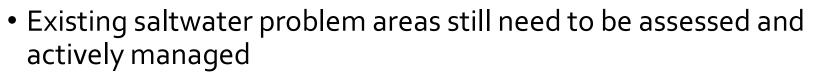
Withdrawals threatened by 5-ft sea level rise

Climate Change and Impacts to Groundwater Recharge

Surface Water Supply Reservoir Systems

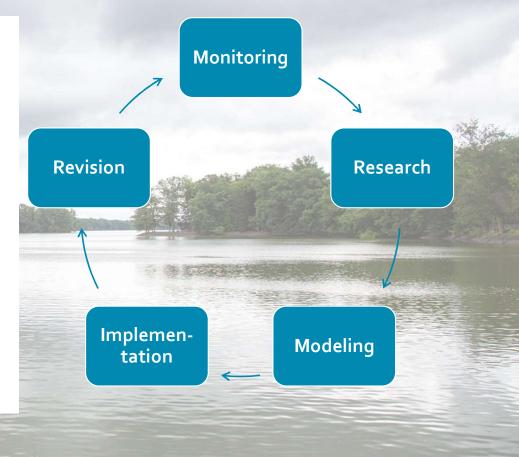
- Used the NJ RiverWare model to assess
- 'What if' climate change scenarios:
 - Increased demand (5-10%) and reduced streamflow (5-10%) during spring, summer and fall simulated in NJ RiverWare model
 - Results:
 - Increased water-supply drought frequency and duration
 - More water needs to be pumped, especially without draft reductions
 - Combined northeast storage adequate, but variations between systems
 - Draft reductions important
 - Raw and finished water interconnections important
- Surface Water System Findings:
 - Limited potential for adverse water supply impacts to systems
 - Better data needed for future streamflow and drought severity and duration
 - Water quality impacts need to be assessed
 - Climate change effects on demands need to be quantified and evaluated
 - Need adaptability to respond to extreme events- flooding, water main breaks, etc.

Overall Plan Findings


The plan concludes that, under normal conditions and in most regions, New Jersey has adequate volumes of source water supply and is wellpositioned to address water supply challenges <u>as long as</u> the state continues to take actions to mitigate the threats of climate change, aging infrastructure and emerging contaminants.

The **availability** of surface water, unconfined groundwater, and confined aquifers, the use of which **varies geographically**, was modeled to investigate potential shortages. Although not evenly distributed throughout the state, total **natural water resource availability** (including reservoirs) remains about the same as the 2017 New Jersey Statewide Water Supply Plan determined. However, **current and forecasted use** did change, and a few regions showed **potential shortages**.

- Uncertainties exist in forecasted climate conditions, especially beyond 2050, and current forecasts will change as the science evolves and information specific to NJ is improved
- WSP water availability impacts evaluations were limited and need to be continued and enhanced to confirm findings
- Normal and severe dry and wet events will still occur, floods likely to be worse, and infrastructure needs to be maintained and/or hardened to withstand these events
 - Raw and finished water transfers will be needed
 - More research is needed to characterize future drought frequency, duration, and severity, with increased occurrence of *flash drought-like* events (already happening?)


- Water quality impacts (e.g. HABs) have not been quantified at this time, but are anticipated and need to be evaluated, results could be significant
- Sea-level rise will impact unconfined potable aquifers and outcrop areas, and may inundate wells and related infrastructure
- Saltwater will move further upriver and more often potentially impacting lower elevation dams, intakes and reservoirs
- Future demands are expected to change in response to climate changes; e.g. longer growing seasons

What's Next....

WSP CC Potential Actions to Include

- Monitoring
 - e.g., real-time, climate, hydrologic...
- Research
 - e.g., global and downscaled climate forecasts, water quality, demands...
- Modeling
 - e.g., improved/confirmed CC impacts on water availability...
- Implementation
 - e.g., policies, mid-WSP updates, water allocation permitting...
- Revision
 - e.g., WSP revisions...

Thanks

- Water Supply Plan Team
 - Department Leads:
 - NJGWS Water Supply Modeling and Planning
 - Division of Water Supply and Geoscience
 - Water Resource Management
 - Water Supply Advisory Council
 - Rutgers, The State University
- More info
 - email: <u>watersupplyplan@dep.nj.gov</u>
 - website: <u>https://dep.nj.gov/water-supply-plan/</u>
 - New Jersey Water Withdrawal Data Summary Viewer https://experience.arcgis.com/experience/9da78182503e467989c280bfdf741d3a

183

