Meeting of Model Expert Panel with DRBC Staff

Report to the Water Quality Advisory Committee

Delaware River Basin Commission

March 20, 2019

Presented to an advisory committee of the DRBC. Contents should not be published or re-posted in whole or in-part without the permission of the DRBC.
DRBC Expert Panel Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl Cerco</td>
<td>U.S. Army Corps of Engineers (Retired)</td>
<td>Panel Members</td>
</tr>
<tr>
<td>Bob Chant</td>
<td>Rutgers University</td>
<td></td>
</tr>
<tr>
<td>Steve Chapra</td>
<td>Tuffs University</td>
<td></td>
</tr>
<tr>
<td>Tim Wool</td>
<td>U.S. EPA Region 4</td>
<td></td>
</tr>
<tr>
<td>Vic Bierman</td>
<td>LimnoTech</td>
<td>Consultant to DRBC</td>
</tr>
<tr>
<td>Scott Hinz</td>
<td>LimnoTech</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Specialty and Responsibility</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Tom Amidon</td>
<td>Manager, Modeling Section</td>
<td>Modeling general / multi-task / Atmospheric deposition</td>
</tr>
<tr>
<td>Jacob Bransky</td>
<td>Aquatic Biologist</td>
<td>Primary productivity / ichthyoplankton / algal speciation study</td>
</tr>
<tr>
<td>Fanghui Chen</td>
<td>Water Resource Engineer</td>
<td>Hydrodynamic modeling / data retrieval / post processing</td>
</tr>
<tr>
<td>Vince DePaul</td>
<td>Hydrologist (USGS)</td>
<td>WQ Modeling / wetlands interaction</td>
</tr>
<tr>
<td>Elaine Panuccio</td>
<td>Water Resource Scientist</td>
<td>Tributary / point source data management / load calculation</td>
</tr>
<tr>
<td>Namsoo Suk</td>
<td>Director, Science and WQ Management</td>
<td>Project management / multi-task / modeling</td>
</tr>
<tr>
<td>John Yagecic</td>
<td>Manager, Water Quality Assessment</td>
<td>Data retrieval & analysis / multi-task / light extinction</td>
</tr>
<tr>
<td>Li Zheng</td>
<td>Senior Water Resource Engineer</td>
<td>Hydrodynamic and WQ modeling</td>
</tr>
</tbody>
</table>
Goal

• Develop a technically sound eutrophication model for the Delaware Estuary and Bay utilizing the current state of the science within a timeframe established by the Commission
 • Identify appropriate levels of source controls, especially in relation to dissolved oxygen
Modeling Approach

- Develop a linked hydrodynamic and water quality model
 - Environmental Fluid Dynamics Code (EFDC)
 - Water Quality Analysis Simulation Program (WASP8)

- Assess available data and conduct additional monitoring to fill gaps
 - Sources
 - Ambient water

- Calibrate linked model
 - Historical data, primarily 2012-2013
 - Intensive monitoring period 2018-2019

- Conduct forecast simulations with calibrated model
 - Determine levels of external sources required to achieve varying levels of ambient dissolved oxygen
Targeted Schedule

<table>
<thead>
<tr>
<th>Designated Use Program Tasks</th>
<th>Activity</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydrodynamic Model Development</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Intensive Ambient Data Collection & Data Analysis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Water Quality Model Development and Calibration</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Determination of higher levels of DO & protection to aquatic species.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Develop wasteload & load allocations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Report Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- Program Tasks supported by the bordering states/DRBC Agreement
- Lighter shading indicates preliminary or follow-up work
Conceptual Model
Nutrient Load Boundaries

- Tributary Loads
 - Delaware River at Trenton (Zone 1)
 - Schuylkill River
 - ~ 29 other tributaries
- Tidal Boundaries
 - Ocean at mouth of Delaware Bay
 - C&D Canal
- Direct Basin Loads
 - Wasteloads: WWTPs, CSOs, MS4
 - Nonpoint Source (runoff outside MS4)
 - Wet/Dry deposition onto water surface
Boundary Load Estimates for Tribs and WWTPs
“First cut” daily loads for 2012-2013 simulation

Sources

* WWTPs
 * Sampled 2011 – 2015
 * Daily load = concentration × daily flow
 * Average load calculated
* Tributaries
 * As first cut, PWD methodology used
 * Concentrations assigned for 3 seasons and 2 flows (high/low) based on 1990-2013 data
 * High/low flow threshold = 80th percentile
 * Unmonitored tribs borrow assigned concentrations from nearby tribs

Nutrients

* Total Organic Carbon
 * TOC = DOC + POC
 * TOC, DOC measured directly
* Total Nitrogen
 * TN = Nitrate(+Nitrite) + TKN
 * Nitrate, Nitrite, TKN measured directly
* Ammonia (NH₃-N)
 * Measured directly
* Total Phosphorus
 * TP = PO₄ + DOP + POP
 * TP, PO₄ measured directly
Total Organic Carbon

TOC Loads by Source (kg/yr)

- Delaware at Trenton: 49%
- Schuylkill River: 14%
- WWTPs: 18%
- Other Tributaries: 19%

TOC by Zone (MG/yr)

- ZONE 1: 25,000
- ZONE 2: 0
- ZONE 3: 0
- ZONE 4: 0
- ZONE 5: 0
- ZONE 6: 0

Legend:
- Upstream
- Tributaries
- WWTPs
Total Nitrogen

TN Loads by Source (kg/yr)

- Delaware at Trenton: 37%
- Schuylkill River: 16%
- WWTPs: 32%
- Other Tributaries: 15%

TN by Zone (MG/yr)

- ZONE 1: Upstream
- ZONE 2: Tributaries, WWTPs
- ZONE 3: Tributaries, WWTPs
- ZONE 4: Tributaries, WWTPs
- ZONE 5: Tributaries, WWTPs
- ZONE 6: Tributaries, WWTPs
Ammonia-Nitrigen

Ammonia-N Loads by Source (kg/yr)

- Delaware at Trenton: 12%
- Schuylkill River: 2%
- Other Tributaries: 2%
- WWTPs: 84%

Ammonia-N by Zone (MG/yr)

ZONE 1: 1,000
ZONE 2: 500
ZONE 3: 3,000
ZONE 4: 5,000
ZONE 5: 1,500
ZONE 6: 100

Legend:
- Upstream
- Tributaries
- WWTPs
Total Phosphorus

TP Loads by Source (kg/yr)

- Delaware at Trenton: 38%
- Schuylkill River: 8%
- WWTPs: 40%
- Other Tributaries: 14%

TP by Zone (MG/yr)

- ZONE 1
- ZONE 2
- ZONE 3
- ZONE 4
- ZONE 5
- ZONE 6

Legend:
- Upstream
- Tributaries
- WWTPs
2018-2019 Monitoring Program

WWTPs

- **Frequency**
 - Weekly for Tier 1 (Top 12)
 - Monthly for Tier 2 (Next 20)

- **Parameters**
 - COD, TOC, DOC, CBOD$_5$
 - Ammonia, Nitrite, Nitrate, TKN, SKN
 - TP, SRP
 - TSS, TDS or conductivity
 - In-situ DO, pH, and temperature

Tributaries

- **Frequency**
 - 2x/month (Delaware at Trenton, Schuylkill)
 - Monthly April-Nov at 25 other tribs

- **Parameters**
 - COD, TOC, POC, DOC, CBOD$_5$
 - Ammonia, Nitrate+Nitrite, TKN
 - TP, OrthoP, PIP
 - Chloride, Silica, Sulfate
 - Alkalinity, Chlorophyll-a
 - TSS, TS, TVS
Modeling Progress to Date

- Preliminary calibration of EFDC hydrodynamic model
 - Water surface elevation
 - Salinity
 - Water temperature
- Continued cross-checking of EFDC-WASP8 linkage
 - Flow rates
 - Salinity transport
 - Mass balance check in WASP8
- WASP8 test simulations
 - TN and TP with chemical-biological kinetics turned off
 - Oxygen consumption by NH4-N, CBOD, and SOD
Hydrodynamics Model Grid - Bathymetry

Model Grid and Bathymetry (Grid 5, Grid 1, and Grid 2) – Bathymetry (Based on FEMA 2011 DEM, Reflects 2016 dredging depth). Vertical datum is NAVD88.

- Grid 5, 1933 cells
 - KC = 5

- Grid 1, 2281 cells
 - KC = 10

- Grid 2, 2641 cells
 - KC = 20
Data for Hydrodynamics Model Calibration

Location of NOAA and USGS Stations

NOAA Stations
- Tide/Water Temperature, Conductivity

USGS Stations
- Water Temperature, Specific Conductance

(Data from Reedy Island, Chester, and Ben Franklin Bridge were used)
Calibration Results – Grid 5 (2017-2018): Water Surface Elevation

Reedy Point

Figure XX
Observed and Predicted Water Surface Elevation at NOAA REEYD POINT

Figure --
Comparison of Observed and Predicted Water Surface Elevation at NOAA REEYD POINT

Y = 0.9792 X - 0.0145
R² = 0.9767
N = 17056
RMSE = 0.0961
ubRMSE = 0.0947
Bias = -0.0166
Skill = 0.9939
Calibration Results – Grid 5: Salinity (2017-2018)

Reedy Island

Figure XX

Observed and Predicted Salinity at USGS REEZY ISLAND

Run ID: EFDC_FGD_GVC_MYDRO преприс. 1980-05. Fine grid GVC, KC=5, CTE=3.5, d1=15s. Salinity adjustment = 3.5 psu

Figure XX

Comparison of Observed and Predicted Salinity at USGS REEZY ISLAND during 01-01-2017 to 12-31-2018 period.

Run ID: EFDC_FGD_GVC_MYDRO преприс. 1980-05. Fine grid GVC, KC=5, CTE=3.5, d1=15s. Salinity adjustment = 3.5 psu.
Calibration Results – Grid 5: Water Temperature

Figure XX
Observed and Predicted Water Temperature at NOAA REEYD POINT
Station ID: RS11493, NOAA REEYD POINT
Run ID: ERCI-EDO_SWC_HRDG, Framework: PREPARE, Framework: PREPARE.
Station Adjustment 1.5 ft, NOAA NCEP-NCAR data were used.

2017-2018
Reedy Point
2012-2013
• Eutrophication Process
 • 5 phytoplankton classes
 • 3 Periphyton/Macroalgae (benthic algae)
 • Nutrient cycling – N, P, Si
 • 3 CBOD and dissolved oxygen
 • pH and alkalinity
 • Water Temperature
* Zero loads (except DO)
 * Re-aeration only
* Oxygen consumption by NH4-N
 * Point source loads only
 * Tributary loads only
Zero Loading (Except DO) with Re-aeration

Base case

Average Dissolved Oxygen Saturation during July - August 2012

Dissolved Oxygen

0 20 40 60 80 100 120 140

River Mile

Zone-6 Zone-5 Zone-4 Zone-3 Zone-2

Base Case
Oxygen Consumption by NH$_4$ from point source loads only

Average Dissolved Oxygen Saturation during July - August 2012

Dissolved Oxygen

River Mile

Zone-6
Zone-5
Zone-4
Zone-3
Zone-2

kn = 1.0/day
kn = 2.0/day
Oxygen Consumption by NH$_4$
from tributary loads only

Average Dissolved Oxygen Saturation during July - August 2012

Dissolved Oxygen:

River Mile
Path Forward

- Significant progress on model development and calibration since March, 2018
- Finalize calibration of EFDC hydrodynamic model
- Evaluate and resolve EFDC - WASP8 linkage issues
- Develop and refine remaining model inputs to WASP8
- Begin calibration of WASP8
- Implement Expert Panel recommendations to monitoring program