DOCKET NO. D-2017-008-1

DELAWARE RIVER BASIN COMMISSION

Silver Run Electric, LLC
Silver Run Project

New Castle County, Delaware and
Lower Alloways Creek Township, Salem County, New Jersey

PROCEEDINGS

This docket is issued in response to an Application submitted to the Delaware River Basin Commission (DRBC or Commission) by Marathon Engineering & Environmental Services, Inc. on behalf of Silver Run Electric, LLC (SRE or docket holder) on July 31, 2017 (Application), for review of a proposed new electric substation and transmission line project that crosses the Appoquinimink River Natural Area and the Augustine Wildlife Area, which are designated in the DRBC’s Comprehensive Plan as recreation project areas. Regulatory approvals related to water resources from the United States Army Corps of Engineers (USACE), the Delaware Department of Natural Resources and Environmental Control (DNREC), New Jersey Department of Environmental Protection (NJDEP), New Castle County Department of Land Use and Cumberland-Salem Conservation District are required as described in the Findings sections of this docket.

The Application was reviewed for approval under Section 3.8 of the Delaware River Basin Compact. The New Castle County Planning Department and the Salem County Planning Department have been notified of pending action on this docket. A public hearing on this Project was held by the DRBC on February 14, 2018.

A. DESCRIPTION

1. **Purpose.** The purpose of this docket is to approve a new electric substation and transmission line project known as the Silver Run Project (Project). Approximately 1.6 miles of the overhead transmission line crosses the Appoquinimink River Natural Area (ARNA), and approximately 1.3 miles of the overhead line crosses the Augustine Wildlife Area (AWA), in New Castle County, Delaware, which are designated in the DRBC’s Comprehensive Plan as recreation project areas.

2. **Location.** The proposed Silver Run Substation will be located on a privately-owned agricultural parcel in New Castle County, Delaware approximately 0.25 miles northwest of Silver Run Road (Delaware Route 9) in New Castle County Delaware. The overhead transmission line in Delaware will run approximately 2.4 miles from the Silver Run Substation generally east over the Appoquinimink River, Appoquinimink River Natural Area and the Augustine Wildlife Area to a proposed transition structure located in the Delaware River approximately 0.1 miles offshore.
From the transition structure, the electric transmission line will transition to submarine cable installed beneath the bed of the Delaware River at River Mile 51.5 and continue approximately 2.6 miles east to a trenched shore landing and then to a transition structure in New Jersey on the northwestern side of PSE&G’s Hope Creek Nuclear Generating Station in Lower Alloways Creek Township, New Jersey. From the transition structure in New Jersey, the overhead transmission segment will continue approximately 3,000 feet terminating at PSE&G's Hope Creek Substation expansion.

3. **Area Served.** Water used for the construction of the Project is temporary and is limited to dust control and submarine cable installation. For the purpose of defining Area Served, the Application is incorporated herein by reference consistent with conditions contained in the DECISION section of this docket.

4. **Physical features.**

 a. **Design criteria.** The Silver Run Project was selected by PJM Interconnection, L.L.C. (“PJM”) in its Artificial Island competitive transmission solicitation. The Project was designed to improve stability margins, reduce Artificial Island MVAR output requirements and address high voltage reliability issues in the Southern New Jersey electrical grid. The Project will also create an additional electrical connection between the Delmarva Peninsula and southern New Jersey and reduce transmission congestion.

 The Project will provide a new 230 kV electricity transmission connection between the proposed Hope Creek substation expansion in Salem County, New Jersey and the proposed Silver Run substation, which will interconnect to two (2) existing DP&L-owned 230-kV overhead lines in New Castle County, Delaware to resolve grid stability and reliability issues. The Project is comprised of a new electric substation in New Castle County, Delaware (the Silver Run Substation) and approximately 5.6 miles of 230 kV overhead and submarine electric transmission line in Delaware and New Jersey. The Project also includes transition structures in the Delaware River near the Delaware shore and on Artificial Island on the New Jersey shore to allow for the connection of the overhead transmission line to the submarine cable.

 b. **Facilities.** The following section describes the major components of the Project.

Silver Run Substation

The proposed Silver Run Substation will occupy approximately six acres of agricultural land northwest of Silver Run Road in New Castle County, Delaware. The Silver Run Substation will include high-voltage circuit breakers, disconnect switches, metering equipment, an electrical control house, communications systems, lightning masts, overhead shield wires, lightning arresters, and other equipment required for operation and maintenance of SRE’s transmission facilities.

The substation area will be graded and covered in gravel. For security purposes, a chain link fence topped with barbed wire will surround the facility. Access to the Silver Run Substation will be provided using an existing farm driveway that may be improved by grading and graveling during construction and may be extended by approximately 500 feet through an upland field area.
to reach the substation entrance gate. No permanent water supply or sanitary facilities are proposed for the Silver Run Substation.

A five-acre area adjacent to the Silver Run Substation site and portions of the approximately nine acres of the substation easement not within the proposed fence line will be used to support construction laydown requirements and construction parking needs.

Overhead Transmission Line and Structures

The proposed 230-kV transmission line consists of one three-phase AC circuit supported by tubular steel structures, including two conductors per phase (i.e., six total conductors), shield wires, and fiber optic communications lines.

The overhead transmission structures will consist of self-supporting tubular steel monopoles (13 in Delaware and 8 in New Jersey) and one tubular steel H-Frame structure in Delaware. The monopole and H-Frame transmission structures are approximately 4 to 10 feet in diameter and range from 85 to 135 feet in height. Each Delaware structure will be set on one caisson foundation (two at the H-Frame structure) measuring approximately 6 to 12 feet in diameter. In Delaware, the caisson foundations will be embedded with a vibratory hammer; however, if soils are not conducive to vibratory caisson installation, drilled pier foundations would be used instead. In New Jersey, foundations for the structures located on the PSEG Nuclear property are expected to be helical pier foundations, capped with steel grillage assemblies for tangent/small angle structures and concrete caps at heavy angle/dead-end structures. To prevent and minimize surface disturbance to wetland habitats, SRE plans to use helicopter construction for all overhead transmission structures located in wetlands.

The width of the proposed overhead transmission line right-of-way (“ROW”) is 125 to 150 feet, which is necessary to account for the deflection of the conductors during high-wind design conditions.

Submarine Cable

The Project will use seven submarine cables for the crossing beneath the Delaware River. Each cable will be approximately six inches in diameter and will consist of a copper core, surrounded by layers of insulation and armoring. Additionally, two individual fiber optic communications cables will be embedded beneath the Delaware River bed during the cable runs. The submarine cable will be buried a minimum of 25 feet below the approved Federal navigation channel depth in areas within the limits of the Federal navigation channel and buried at least 15 feet below the present river bottom in the majority of the areas outside the limits of established Federal navigation channel. Burial depths of 10 feet or less may occur in proximity to the transition structure near the shore on the Delaware side of the river and at the New Jersey submarine cable shore landing. Installation method of the submarine cable is detailed in the findings section of the docket. The cables will be installed approximately 30 feet apart and will occupy a corridor nominally 250 feet wide.

The submarine cable is designed to not require routine maintenance. Additionally, the Project’s seventh cable (spare) minimizes the potential need for repairs since the spare cable could be used in the unexpected event of cable failure.
Transition Structures

The transition structure in the Delaware River will be an H-frame design including tubular steel poles up to approximately 130 to 140 feet in height. The structure will be placed on top of a driven pile foundation including eight 30-inch diameter steel piles topped with concrete caps with anchor bolts to which the steel H-frame structure will be secured. The area of riverbed occupied by the eight steel piles will be approximately to 39.3 square feet. The submarine cables will make the transition from underground to above-water inside protective sleeves affixed to the lower portion of the transition structure. The conductors will then proceed up the pole on jumper insulators and will transition to the overhead landward span from a strain insulator assembly for each phase.

To provide protection against vessel allisions, the Delaware transition structure will be equipped with a vessel allision protection system. This system will consist of driven pile foundations with twelve 42-inch diameter steel piles and concrete fendering to protect the transition structure in the unexpected event of a vessel allision in the Delaware River. The area of riverbed occupied by the 12 steel piles will be approximately 115.4 square feet.

The New Jersey submarine cable termination point will be located in uplands and consist of a concrete cable anchoring subsurface structure occupying up to 1,500 square feet, cable terminators and overhead transmission transition structure similar to the in-river transition structure.

A total of 11 of the Project’s overhead supporting structures located in New Castle County, Delaware are located in FEMA mapped 100-year floodplain. The floodplain is tidal and not covered under the Commission’s Flood Plain Regulations. No above ground structures are proposed in New Jersey within FEMA mapped 100-year floodplain.

c. **Cost.** The overall cost of this Project is estimated to be $146,000,000.00

d. **Relationship to the Comprehensive Plan.** The Project passes through the ARNA and AWA, which are designated in DRBC’s Comprehensive Plan as recreation areas.

B. FINDINGS

Project History

The purpose and need of the Silver Run Project is to reliably and economically construct, interconnect, and commission the Silver Run Project components by June 1, 2020. The need for the Silver Run Project is reinforced by PJM’s selection of this Project in its Artificial Island competitive transmission solicitation. PJM is the entity responsible for maintaining electric system reliability through operations and planning of its network covering all or parts of 13 states (including New Jersey, Pennsylvania, and Delaware) and the District of Columbia, with a population of more than 65 million Americans. Having identified a reliability issue, PJM opened a competitive process on April 29, 2013 seeking proposals from developers to improve stability margins, reduce Artificial Island reactive power (i.e., MVAR) output requirements, and address
high voltage reliability issues in the southern New Jersey electrical grid. In response to PJM’s solicitation, seven project sponsors submitted 26 separate proposals, and PJM selected the SRE’s proposal based on its ability to achieve the needed electrical system improvements, low cost, cost certainty, and ability to cross the Delaware River via either overhead or underground methods. The need to construct, interconnect, and commission the Silver Run Project components by June 1, 2020, is established in the Silver Run Project’s Designated Entity Agreement with PJM, wherein the SRE is contractually obligated to complete the Silver Run Project and place it under the operational dispatch of PJM as part of the electrical system by this date.

Construction Methods

Transmission Structure Installation

To prevent and minimize surface disturbance to wetland habitats the docket holder plans to use helicopter construction for all seven (7) of the overhead transmission structures that are located in wetlands. A heavy lift helicopter will be used for delivery of components to the construction site and a smaller helicopter will be used for wire stringing activities. This construction method eliminates surface disturbances that would be required to construct temporary access roads to each structure and is additionally expected to reduce the construction time of the Project.

Construction personnel will mobilize to the structure location via a low surface pressure vehicle, boat, or on foot. No installation of temporary access or gravel roads will be required, nor will timber matting be required for access to the structures located in wetlands. The helicopter will first deliver a pad of protective matting, approximately 20 feet by 12 feet in size, to the structure location to support installation equipment during construction. The helicopter will then deliver and install the caisson foundation using a vibratory hammer. The structure is then airlifted to the site and secured to the foundation.

Overhead structures 9 and 10 in Delaware, which are located in previously disturbed agricultural upland fields within the ARNA and AWA, may be installed by conventional, non-helicopter, ground-based construction (i.e., wherein equipment and materials are delivered to the site via truck and trailer) using drilled pier foundations. These foundations begin by drilling out a shaft up to twelve feet in diameter. A foundation cage made of steel rebar is then lowered into the shaft, which is then filled with concrete and allowed to set. Anchor bolts are left protruding above the top of concrete for affixing the transmission structure, which would be lifted into place by a crane. Temporary work areas for construction and pulling and tensioning would be upland areas approximately 2.4 acres for structure 9 and approximately 2.6 acres for structure 10. The same construction methods may be used at transmission structure sites located outside of the ARNA and AWA in Delaware in privately owned, upland, previously disturbed agricultural areas, where the structure construction work areas would be nominally 150 feet by 150 feet.

For the overhead transmission structures located in New Jersey, including the New Jersey transition structure, SRE proposes to use helical pier foundations. A helical pier is a thin-walled circular pipe with a helix at the end, which allows it to be screwed into the ground. Each pipe section can be connected to another, allowing installers to sink the pier as deep as required to meet the torque value specified by the design engineer. Each transmission structure foundation is made
up of a number of these piers, which are typically battered to provide additional strength. The individual piers are tied together using different types of caps, sometimes using a steel grillage assembly while other times employing a steel reinforced concrete cap, which contains provisions for affixing the transmission pole to the top. Once the foundation is complete, the transmission structure is then lifted into place and secured to the foundation. After all structures are erected, the conductors can then be pulled through stringing sheaves attached to the structures

Once the structures are installed, helicopter wire stringing is conducted using a light-duty helicopter (in Delaware) or ground-based equipment (in New Jersey). The pulling process is accomplished using powered pulling equipment at one end and powered braking or tensioning equipment at the opposite end of the transmission line segment where the conductor spools are positioned. For the proposed overhead transmission line route in Delaware, pulling and tensioning and splicing equipment will be located at the Silver Run Substation, within agricultural fields on private lands, in the upland areas adjacent to Delaware overhead structures 9 and 10, and on an anchored barge near the transition structure. For the New Jersey overhead transmission line, these activities will occur in previously disturbed upland areas at the Hope Creek Nuclear Generating Station.

Stormwater and erosion control best management practices (BMPs) will be implemented at work sites to ensure protection of surface water quality. Following construction, SRE will re-contour (to the extent any grading was necessary) and restore the temporary work areas in accordance with its permits.

Delaware Transition Structure Installation

Barge-mounted equipment will be used in the Delaware River for transition structure construction. The foundations for the transition structure will be driven steel piles with concrete plugs. After pile driving is complete, pre-cast concrete sections will be installed on top of the piles. Finally, temporary forms will be constructed on top of these pre-cast sections and a concrete cap poured to complete the foundation. The transition structure base will be bolted onto the foundation and the remainder of the transition structure will be erected with a barge-mounted crane. Construction of the vessel allision protection system will be accomplished with barge-mounted equipment. As with the transition structure, the vessel allision protection structure will use driven steel foundation piles with concrete plugs, pre-cast concrete elements secured to the foundation, and a cast-in-place cap.

Submarine Cable Installation

The submarine cable will be installed across the Delaware River using water jetting technology. This method achieves placement of the cable at the targeted depth and burial of the cable as fluidized sediment settles back above the installed cable with minimal riverbed disturbance. Most of the submarine cable will be installed below the riverbed using a barge that is specially designed and configured for installing submarine cable with a device known as the vertical injector. The vertical injector is equipped with a series of forward facing nozzles that direct water pumped from the Delaware River into the sediment to fluidize the sediment in advance of the vertical injector as it moves and lays cable along the cable route. This method of laying and burying cable simultaneously will ensure the placement of the submarine cable at the target burial
depth with minimal bottom disturbance (approximately two feet wide) and the majority of the fluidized sediment settling back into the cable furrow.

In shallow waters at the New Jersey shoreline and near the Delaware transition structure, the cable may be installed with a jetting sled. The jetting sled will install the submarine cable using a process known as post-lay burial, in which the cable length is spooled off the vessel and positioned along the alignment on the riverbed and then in a separate process, the jetting sled is towed over the cable to embed the cable in the riverbed.

The processes described above will be used for each of the seven cables that make up the submarine cable. Once installation of one cable is completed, the process will be repeated for each of the remaining cables until all seven are installed. Additionally, prior to laying each cable, the docket holder will perform one or more proving runs with the vertical injector to ensure that the cable can be installed to the required burial depth.

During installation, if an area of sediments unsuitable for jetting is discovered and cannot be avoided or resolved with multiple proving runs, SRE may conduct a limited amount of dredging to ensure the cables reach the target installation depth. Dredging will be limited to the area of unsuitable sediments. Dredging will proceed promptly after SRE’s notifications to the USACE and to either the NJDEP or the DNREC, depending on location relative to the State boundary line. Dredged sediments will be analyzed before being replaced in the trench as cable cover or disposed in accordance with applicable regulations at a site(s) approved by the NJDEP or DNREC.

Submarine Cable New Jersey Shore Landing

In New Jersey, where the submarine cable crosses the shore of the Delaware River, SRE will excavate a trench for each cable using an excavator. Each trench will be excavated westward from the New Jersey cable termination point on land, located approximately 300 feet landward of the high tide line, to a point approximately 50 feet riverward of the shoreline riprap. Temporary shoring (e.g., sheet piles or trench boxes) may be used to aid in keeping the trench open during construction in the soft soils. Excavated sediments will be temporarily stored on a barge or temporarily or permanently deposited in the PSEG confined disposal facility located in uplands or in uplands located within SRE’s easement area. Following cable installation, excavated sediments or clean sand/gravel, as appropriate, will be redeposited in the trenches and used as cover for the submarine cables. The volume of excavation below the high tide line will be up to approximately 630 cubic yards per trench. Silt curtains will be used as practicable during excavation and backfilling to protect water quality.

Operations and Maintenance

The proposed route for the overhead transmission line has been selected in part, to minimize the need for clearing of trees along the alignment. No clearing of vegetation is expected to be required on State lands in Delaware. Minor clearing of vegetation (up to approximately 0.1-acre total) may be needed on private lands in Delaware to maintain clearances for electrical safety, long-term maintenance, and reliability of the electric line. No tree clearing is anticipated for the New Jersey overhead transmission line.
Land Requirements and Wetland Impacts

The Project will require approximately 48.8 acres of land during construction and approximately 10.2 acres for operation.

NWI mapping of the Project area indicates that tidal wetlands are present throughout most of the proposed overhead transmission line route in the ARNA and AWA between the substation and the Delaware River in New Castle County, Delaware. Coastal wetlands are also present along the Delaware River shore line in New Jersey and will be crossed by the shore landing trenches containing the buried cable.

The Project will result in approximately 0.7 acres of temporary wetland disturbance during construction and less than 0.01 acres of permanent impacts following construction. The majority of the temporary wetland impacts are associated with the installation of the trenches at the New Jersey cable landing area. Following the installation of the cables, the trenches will be backfilled and the contours and river banks restored to previous conditions. The permanent wetland impacts result from the placement of foundations for seven overhead transmission line structures.

In Delaware, temporary impacts to tidal wetlands will be limited to the placement of one (1) 12’ x 20’ timber mat at each of the seven transmission structure foundations to provide temporary construction laydown for the ground crew. As previously described, ground crews will proceed via boat, low surface pressure vehicle, helicopter, or foot to the transmission structure locations. Therefore, no grading or temporary access roads in wetlands will be needed. Permanent impacts to tidal wetlands in Delaware will be limited to the foundation area at each structure. The total area of temporary impact to tidal wetlands in Delaware is 1,920 square feet (0.04 acre) and the total area of permanent wetland impact from the monopole foundations is 287.5 square feet (<0.01 acre).

ARNA and AWA

The ARNA is a Delaware State Natural Area located in the Appoquinimink River Watershed. State Natural Areas are composed of areas of land and/or water, whether in public or private ownership, which have retained or reestablished its natural character (although it need not be undisturbed), has unusual flora or fauna, or has biotic, geological, scenic or archaeological features of scientific or educational value. The AWA is publicly owned State land managed by the Division of Fish and Wildlife, DNREC. The Green Tract of the AWA is located within the ARNA and used primarily for hunting and fishing purposes.

The proposed Delaware overhead transmission line route crosses approximately 1.6 miles of the ARNA, 1.3 miles of which is located within the Green Tract of the AWA. The ARNA is located east of the substation and includes the Appoquinimink River and multiple side channels and unnamed tributaries to the Delaware River surrounded by tidal wetlands. East of the main channel of the Appoquinimink River, the proposed overhead transmission line crosses the Green Tract of the AWA (located within the ARNA). A total of nine (9) overhead transmission structures are located within the ARNA, all but two of which are located within the Green Tract. Seven (7) of the nine (9) transmission structures located in within the ARNA will be installed using
helicopter construction to reduce land and wetland impacts. The remaining two (2) structures will be installed with ground-based methods as described under Construction Methods above.

SRE will not need to create or maintain access roads to the transmission structure locations in the ARNA or AWA. The Delaware overhead transmission line will not require a change in use of the affected areas; i.e., the transmission line ROW will continue to support the existing uses of wildlife habitat, bird watching, hunting, and agriculture. No removal of vegetation is expected to be needed to maintain electrical clearances during operation of the overhead transmission line within the ARNA, given that trees are generally absent from the tidal marsh communities that exist within the ARNA. The transmission line structure foundations will occupy a total footprint of approximately 515 square feet within the ARNA and thus are not expected to create impacts with respect to stormwater runoff. Additionally, for the overhead transmission line ROW over State-owned lands, SRE will work cooperatively with DNREC’s Division of Fish and Wildlife to fund or implement vegetation management procedures that are consistent with the agency’s management goals for the area and address the spread of invasive species; therefore, there will be no potential for introduction of invasive species impacts within the ROW.

Water Usage

The Project will not result in any permanent water withdrawals or discharges. Water will temporarily be used for the installation of the submarine cables and dust control purposes. Water will be pumped from the Delaware River and discharged immediately back to the Delaware River through the nozzles located on the vertical injector and jetting sled during installation of the submarine cable. The pumps supplying water for cable installation are rated at a total of approximately 2,400 cubic meters per hour, although actual flow rates would be less due to the throttling effects of the injector nozzles. All water that is pumped for this purpose is non-consumptive.

Water spraying for dust control will only be implemented as needed to control dust during dry periods during construction. To the extent that water spraying periodically becomes necessary for dust control during construction, average water usage is estimated at less than 10,000 gallons per day and will be obtained from municipal sources.

Required Project Approvals

The following tables lists the required approvals related to water resources in the Delaware River Basin for the Silver Run Project, and their statuses:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Approvals, Licenses or Permits</th>
<th>Status of Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Agencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USACE</td>
<td>Clean Water Act Section 404 Individual Permit</td>
<td>Application submitted May 25, 2017</td>
</tr>
<tr>
<td></td>
<td>Section 10 Permit for Crossing Navigable Waterways</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 408 Permit for Crossing USACE Project (Federal Navigation Channel)</td>
<td></td>
</tr>
<tr>
<td>Agency</td>
<td>Approvals, Licenses or Permits</td>
<td>Status of Approval</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>State Agencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNREC Division of Water, Wetlands and Subaqueous Lands Section</td>
<td>Section 401 Water Quality Certification</td>
<td>Application submitted August 29, 2017</td>
</tr>
<tr>
<td></td>
<td>Subaqueous Lands (subaqueous lands permit and subaqueous lands lease)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Wetlands Permit</td>
<td></td>
</tr>
<tr>
<td>DNREC Division of Fish and Wildlife</td>
<td>Lands License for Alignment Across Augustine Wildlife Area</td>
<td>Planned for submittal Q1 2018</td>
</tr>
<tr>
<td>DNREC, Division of Watershed Stewardship</td>
<td>Sediment and Stormwater Management Plan</td>
<td>To be addressed by SRE’s construction contractor</td>
</tr>
<tr>
<td>DNREC</td>
<td>Notice of Intent for Storm Water Discharges Associated with Construction Activity Under a NPDES General Permit</td>
<td>To be addressed by SRE’s construction contractor</td>
</tr>
<tr>
<td>NJDEP - Division of Land Use Regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 401 Water Quality Certification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal Area Facility Review Act (CAFRA) Permit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waterfront Development Permit and Acceptable Use Determination for Any Placement of Dredged Material</td>
<td>Planned for submittal Q1 2018</td>
</tr>
<tr>
<td></td>
<td>Coastal Wetlands Permit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidelands License</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Federal Coastal Zone Consistency Determination</td>
<td></td>
</tr>
<tr>
<td>NJDEP - Bureau of Nonpoint Pollution Control</td>
<td>5G3 Construction Stormwater General Permit</td>
<td>To be addressed by SRE’s construction contractor</td>
</tr>
</tbody>
</table>

Local Agencies

<table>
<thead>
<tr>
<th>Agency</th>
<th>Approvals, Licenses or Permits</th>
<th>Status of Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Castle County</td>
<td>Erosion and Sediment Control Plan</td>
<td>To be addressed by SRE’s construction contractor</td>
</tr>
<tr>
<td>Cumberland-Salem Conservation District</td>
<td>Erosion and Sediment Control Plan</td>
<td>To be addressed by SRE’s construction contractor</td>
</tr>
</tbody>
</table>

The Project does not conflict with the Comprehensive Plan and is designed to prevent substantial adverse impact on the water resources related environment, while sustaining the current and future water uses and development of the water resources of the Basin.
C. DECISION

I. Effective on the approval date for Docket No. D-2017-008-1 below, the Project and appurtenant facilities as described in the Section A “Physical features” are approved pursuant to Section 3.8 of the Compact, subject to the following conditions:

a. Docket approval is subject to all conditions, requirements, and limitations imposed by the DNREC, NJDEP, USACE and local agencies.

b. The Project facilities and operational records shall be available at all times for inspection by the DRBC.

c. The Project facilities shall be operated at all times to comply with the requirements of the Water Code and Water Quality Regulations of the DRBC.

d. Within 10 days of the date that construction of the Project has started, the docket holder shall notify the DRBC of the starting date and scheduled completion date.

e. Within 30 days of completion of construction of the approved Project, the docket holder is to submit to the attention of the Project Review Section of DRBC a Construction Completion Statement (“Statement”) signed by the docket holder’s professional engineer for the Project. The Statement must (a) either confirm that construction has been completed in a manner consistent with any and all DRBC-approved plans or explain how the as-built Project deviates from such plans; (b) report the Project’s final construction cost as such cost is defined by the project review fee schedule in effect at the time application was made; and (c) indicate the date on which the project was (or is to be) placed in operation. In the event that the final Project cost exceeds the estimated cost used by the applicant to calculate the DRBC project review fee, the statement must also include (d) the amount of any outstanding balance owed for DRBC review. Such outstanding balance will equal the difference between the fee paid to the Commission and the fee calculated on the basis of the Project’s final cost, using the formula and definition of “project cost” set forth in the DRBC’s project review fee schedule in effect at the time application was made.

f. This approval of the construction related to the facilities described in this docket shall expire three years from the approval date below unless prior thereto the docket holder has commenced operation of the subject Project or has expended substantial funds (in relation to the cost of the Project) in reliance upon this docket approval.

g. Sound practices of excavation, backfill and reseeding shall be followed to minimize erosion and deposition of sediment in streams from any new facilities or repair related construction.

h. Nothing herein shall be construed to exempt the docket holder from obtaining all necessary permits and/or approvals from other State, Federal or local government agencies having jurisdiction over this Project.
i. The docket holder is permitted to provide the water approved in this docket to the areas included in Section A.3. Area Served of this docket. Any expansion beyond those included in Section A.3. Area Served is subject to DRBC review and approval in accordance with Section 3.8 of the Compact.

j. The docket holder shall be subject to applicable DRBC regulatory program fees, in accordance with duly adopted DRBC resolutions and/or regulations. (see 18 CFR 401.43).

k. This approval is transferable by request to the DRBC Executive Director provided that the Project purpose and area served approved by the Commission in this docket will not be materially altered because of the change in Project ownership. The request shall be submitted on the appropriate form and be accompanied by the appropriate fee (see 18 CFR 401.35).

l. The docket holder shall request a name change of the entity to which this approval is issued if the name of the entity to which this approval is issued changes its name. The request for name change shall be submitted on the appropriate form and be accompanied by the appropriate fee (see 18 CFR 401.35).

m. The issuance of this docket approval shall not create any private or proprietary rights in the water of the Basin, and the Commission reserves the rights to amend, alter or rescind any actions taken hereunder in order to insure the proper control, use and management of the water resources of the Basin.

n. The Executive Director may modify or suspend this approval or any condition thereof, or require mitigating measures pending additional review, if in the Executive Director's judgment such modification or suspension is required to protect the water resources of the Basin.

o. Any person who objects to a docket decision by the Commission may request a hearing in accordance with Article 6 of the Rules of Practice and Procedure. In accordance with Section 15.1(p) of the Delaware River Basin Compact, cases and controversies arising under the Compact are reviewable in the United States district courts.

BY THE COMMISSION

APPROVAL DATE: March 14, 2018