WATER SNAPSHOT
2007
An Upper Delaware Snapshot

Help Protect the Delaware River

Drawing by Erin Curtis- Preston Area School
Upper Delaware Scenic & Recreational River

Compilation of results collected by students from Wayne Highlands School District's Damascus Elementary School, Preston Area School and the Hancock Central School in conjunction with National Park Service Ranger Jamie Myers and Rich Egan, National Park Service V.I.P.
Sitting by a Watershed

As I’m sitting by a watershed,
Water laps happily at my feet,
Yes, I’m sitting by a watershed.
No, it’s not a shed filled with water,
But a place where water flows.
It flows in the Delaware River,
Supplying fresh new water
So there is enough air for the fish.
I’m sitting by a watershed,
And watching the Delaware drink.

By: Heather Ritter
Damascus Elementary School

Dark outside, we get our poles
Eels are running
Like silver strings
A bucket, a lantern, a net
Worms, wriggling on a hook
A bite!
Reel it in quick
Eels in the bucket

Riding along the river
I let my horse soak her feet
Very cold water splashes my legs
Eagles fly over us
Ready to canter home

By: Courtney Brock
Hancock Central School
Overview

What: Water Snapshot is a basin-wide water quality sampling event that takes a "snapshot" of the health of the entire Delaware River Basin, starting from the confluence of its headwaters and ending in the Delaware River Estuary that empties into the Atlantic Ocean.

 It is an opportunity for people of all ages and experience levels, and especially students to visit a portion of the Delaware River watershed. Whether it is a tributary or the Delaware River itself, students have an opportunity to observe their surroundings and collect water quality information.

Why: In order to create an awareness of local watersheds and the valuable role they play in all of our lives. Students will gain an appreciation of the health and high quality of water in their own backyards, or next to their own schools.

When: April 20 through April 29, 2007

Where: Students in the Upper Delaware River Valley were able to collect water samples from three different aquatic settings. This year two different tributaries of the Upper Delaware were sampled along with the main stem Delaware River and the East Branch Delaware River. Because each of these areas is unique from each other, a comparison of results between each aquatic setting is encouraged.

Be sure to check out the DRBC Water Snapshot Webpage at:
http://www.state.nj.us/drbc/snapshot.htm

EXPLANATION OF WATER QUALITY TERMINOLOGY USED DURING WATER SNAPSHOT

Nitrate and Phosphate - Nitrate and phosphate are necessary for aquatic plant growth, which supports the rest of the aquatic food chain. Both of these nutrients are derived from a variety of natural and artificial sources, including decomposition of plant and animal materials, man-made fertilizers, and sewage. Rainfall also can be a significant source of nitrates. While excessive nutrients might cause undesirable plant growth with their deleterious impacts on water quality, an appropriate level of nutrients is one of the driving forces of the aquatic ecosystem.

Determining the optimum levels of nitrates and phosphates in water is extremely complex. Their levels often fluctuate considerably because they are constantly being taken up and released by aquatic life, being exchanged with stream bed sediments, and undergoing various other transformations.

Natural nitrate concentrations rarely exceed 10 milligrams per liter (mg/l). Most are less than 1 mg/l, especially during periods of high plant production. Concentrations greater than 20 mg/l may pose a health hazard to small mammals, causing a problem where the blood's hemoglobin cannot transport oxygen.

In natural unpolluted water, phosphate levels are generally very low. Phosphorus, which combines with oxygen to form phosphate, is most often the limiting factor for plant production in streams.

Oxygen - Dissolved - Dissolved oxygen (DO, pronounced dee-oh) is oxygen that is dissolved in water. It gets there by diffusion from the surrounding air; aeration of water that has tumbled over falls and rapids; and as a product of photosynthesis. The amount of dissolved oxygen present is affected by temperature. Cold water generally contains more DO than warm water. If water is too warm, there may not be enough oxygen in it. When there are too many bacteria or aquatic animals in the area, they may overpopulate, using DO in great amounts.

Oxygen levels also can be reduced through over fertilization of water plants by run-off from farm fields containing phosphates and nitrates (the ingredients in fertilizers). Under these conditions, the numbers and size of water plants increase a great deal. Then, if the weather becomes cloudy for several days, respiring plants will use much of the available DO. When these plants die, they become food for bacteria, which in turn multiply and use large amounts of oxygen.

How much DO an aquatic organism needs depends upon its species, its physical state, water temperature, pollutants present, and other factors. For example, at 5 °C (41 °F), trout use about 50-60 milligrams (mg) of oxygen per hour; at 25 °C (77 °F), they may need five or six times that amount. Fish are cold-blooded animals, so they use more oxygen at higher temperatures when their metabolic rate increases.
Numerous scientific studies suggest that 4-5 parts per million (ppm) of DO is the minimum amount that will support a large, diverse fish population. The DO level in good fishing waters generally averages about 9.0 parts per million (ppm).

pH - pH is a measure of the acid/alkaline relationship in a water body. pH values range on a scale of zero to 14, with 7 being neutral. Since pH is logarithmic, a one-notch change in pH (e.g., from 6 to 7) represents a 10-fold increase.

A pH of about 6 to 9 is generally favored by aquatic life, especially fish. Algae and rooted plants in a stream modify pH levels through the photosynthesis and respiration processes. If plants are active, wide swings in pH levels can be observed over a 24-hour period, with low values experienced at night and high values experienced at midday. In-stream pH levels can also be impacted by acid and alkaline chemicals from industry, mining, acid rain, and other man-made sources, as well as by natural sources such as limestone deposits (bedrock) and tannic acid (produced by certain vegetation).

Turbidity - The American Public Health Association (APHA) defines turbidity as "the optical property of a water sample that causes light to be scattered and absorbed rather than transmitted in straight lines through the sample. In simple terms, turbidity answers the question, "How cloudy is the water?"

Light's ability to pass through water depends on how much suspended material is present. Turbidity may be caused when light is blocked by large amounts of silt, microorganisms, plant fibers, sawdust, wood ashes, chemicals, and coal dust. Any substance that makes water cloudy will cause turbidity. The most frequent causes of turbidity in lakes and rivers are plankton and soil erosion from storm water runoff.

The most accurate way to determine water's turbidity is with an electronic turbidimeter. The turbidimeter has a light source and a photoelectric cell that accurately measures the light scattered by suspended particles in a water sample. The results are reported in units called Nephelometric Turbidity Units or NTU's.

Water Temperature - Water temperature is an important environmental factor for fish and other aquatic life, with many species needing specific temperature ranges to thrive. Temperature affects the concentrations of dissolved oxygen in water, with higher concentrations occurring with colder temperatures.

By: Peter Dayton
Hancock Central School
Damascus Elementary School – Damascus, PA
Results of sample testing performed by students of Mr. Smith’s and Mrs. Lang’s classes.

WEATHER CONDITIONS
Air Temp: 20°C
Description: Partly Cloudy
Was there precipitation within the past 48 hours? YES

SAMPLING LOCATION – Delaware River & Beaverdam Creek

SAMPLING DATE – April 26, 2007

<table>
<thead>
<tr>
<th>Delaware River</th>
<th>Water Temp. (°C)</th>
<th>pH</th>
<th>Dissolved Oxygen (ppm)</th>
<th>Water Depth (meters)</th>
<th>Nitrate (ppm)</th>
<th>Phosphate (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heather, Tim, Kella, Aaron</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td><5</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Ben, Joey, Katie, J.J., Jessica</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>0.15</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Kim, Mary, Greg, Jared</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td>0.25</td>
<td><5</td>
<td>1</td>
</tr>
<tr>
<td>Mikaela, Alec, David, Jordan</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>0.25</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Class Averages</td>
<td>13.5</td>
<td>8</td>
<td>5</td>
<td>0.22</td>
<td><5</td>
<td><1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beaverdam Creek</th>
<th>Water Temp. (°C)</th>
<th>pH</th>
<th>Dissolved Oxygen (ppm)</th>
<th>Water Depth (meters)</th>
<th>Nitrate (ppm)</th>
<th>Phosphate (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicole, Logan, Clarence, Robert</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td><5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mike, Juliet, Bret, Daniel</td>
<td>18</td>
<td>8</td>
<td>4</td>
<td><5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gabby, Lisa, Liam, Hunter</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>0.15</td>
<td><5</td>
<td>1</td>
</tr>
<tr>
<td>Will, Brandon, Morgan, Lindsay</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>0.15</td>
<td><5</td>
<td>2</td>
</tr>
<tr>
<td>Roberta, Mark, Devin, Maressa</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Class Averages</td>
<td>14.8</td>
<td>8</td>
<td>5.8</td>
<td>0.15</td>
<td><5</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Hancock Central School – Hancock, NY
Results of sample testing performed by students of Miss Charles’ and Mrs. White’s classes.

WEATHER CONDITIONS
Air Temp: 13°C
Description: PARTLY CLOUDY
Was there precipitation within the past 48 hours? YES

SAMPLING LOCATION – East Branch Delaware River

SAMPLING DATE – April 26, 2007

<table>
<thead>
<tr>
<th>Name</th>
<th>Water Temp. (°C)</th>
<th>pH</th>
<th>Dissolved Oxygen (ppm)</th>
<th>Nitrate (ppm)</th>
<th>Phosphate (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephanie, Lea, Caitlin, Ralph</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td><5</td>
<td>1</td>
</tr>
<tr>
<td>Theresa, Eli, Austen, Kelly, Lacey</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Will, David, Melanie, Kristy</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td>1</td>
</tr>
<tr>
<td>Renee, Meghan, Peter, Alissa</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Jamie, Elizabeth, Courtney, Preston</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Nick, Ali, Anthony, Maria</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Savanna, Cassie, Axel, Andrew, Kaysi</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Kylee, Travis, Brooke, John</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td><1</td>
</tr>
</tbody>
</table>

Class Averages
10.25 7.8 5.5 <4 <1
Preston Area School – Lakewood, PA
Results of sample testing performed by students of Mrs. Dorohovech’s class.

WEATHER CONDITIONS
Air Temp: 24°C Description: SUNNY
Was there precipitation within the past 48 hours? NO

SAMPLING LOCATION – Shehawken Creek

SAMPLING DATE – April 23, 2007

<table>
<thead>
<tr>
<th>Name</th>
<th>Water Temp (°C)</th>
<th>pH</th>
<th>Dissolved Oxygen (ppm)</th>
<th>Nitrate (ppm)</th>
<th>Phosphate (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joey, Baylee, Christina</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Trevor, Hunter, Megan</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Tiana, Harry, Emily</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Brittany, Sierra, Ryan</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Erin, Shawn, Tommy, Rebekah</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Ryan, Anthony, Becky</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Class Averages</td>
<td>16</td>
<td>8</td>
<td>7.3</td>
<td><5</td>
<td><1</td>
</tr>
</tbody>
</table>

Delaware River

The Delaware River
is a very healthy river
So keep it clean
It is a beautiful place and to see
stunning miles in this lovely place
Eagles, muskrats, minks, beavers,
snapping turtles, white tailed deer, skunks,
and porcupines all love its water
because it is so clean.

By: Trevor VanLoan
Preston Area School
Delaware River

I wake in the morning and hear the soft sound of the river near.
Visitors come here each year for fishing and hunting deer.
I live here so I know how the river looks in the snow.
We love our river.
It can be soft and calm, or high and strong.
Anyone who spends some time wants to make the Delaware River area their home, like it’s mine.

By: Alissa Young
Hancock Central School

Delaware River

The Delaware River runs down to Philly.
In the winter it gets might chilly!
It builds up ice.
And it looks real nice.
Then comes summer and there’s lots of sun.
People come for some fun.
The Delaware River draws lots of guests.
Where eagles tend to build their nests.
We can all get along.
And watch the eagles raise their young.

By: Gabby Schott
Damascus Elementary School

Fishing on the Delaware
Caught someone’s underwear
Please keep my river clean.
Swimming on the Delaware
Found someone’s silverware
Please keep my river clean.
Canoeing on the Delaware
Found someone’s dead deer
Please keep my river clean.

By: Travis Bolster
Hancock Central School