Common Name: VINYLIDENE CHLORIDE

Synonyms: 1,1-DCE; 1,1-Dichloroethylene
Chemical Name: Ethene, 1,1-Dichloro-

Date: August 2002 Revision: May 2010

Description and Use
Vinylidene Chloride is a clear, colorless liquid, or a gas above 89°F (32°C), with a mild, sweet odor. It is used as an intermediate in making organic chemicals and copolymers, SARAN® Wrap, and coatings, and is also used as a flame retardant coating for fibers.

- ODOR THRESHOLD = 190 to 500 ppm
- Odor thresholds vary greatly. Do not rely on odor alone to determine potentially hazardous exposures.

Reasons for Citation
- Vinylidene Chloride is on the Right to Know Hazardous Substance List because it is cited by ACGIH, DOT, NIOSH, DEP, IARC, IRIS, NFPA and EPA.
- This chemical is on the Special Health Hazard Substance List.

First Aid
Eye Contact
- Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while rinsing.

Skin Contact
- Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water. Seek medical attention.

Inhalation
- Remove the person from exposure.
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

Emergency Numbers
Poison Control: 1-800-222-1222
CHEMTREC: 1-800-424-9300
NJDEP Hotline: 1-877-927-6337
National Response Center: 1-800-424-8802

Hazard Summary

<table>
<thead>
<tr>
<th>Hazard Rating</th>
<th>NJDOH</th>
<th>NFPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTH</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>FLAMMABILITY</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>REACTIVITY</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CARCINOGEN</td>
<td>FLAMMABLE AND REACTIVE</td>
<td></td>
</tr>
</tbody>
</table>
POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE

Vinylidene Chloride can affect you when inhaled and by passing through the skin.

Vinylidene Chloride should be handled as a CARCINOGEN—WITH EXTREME CAUTION.

Contact can irritate and burn the skin and eyes.
Prolonged or repeated contact can cause a skin rash, dryness and redness.
Inhaling Vinylidene Chloride can irritate the nose and throat.
High levels can cause headache, dizziness, drowsiness, depression, and a “drunken” feeling that can lead to unconsciousness.

Vinylidene Chloride may damage the liver and kidneys.

Vinylidene Chloride is FLAMMABLE and REACTIVE and a DANGEROUS FIRE and EXPLOSION HAZARD.

Vinylidene Chloride is a peroxide forming chemical that can spontaneously decompose and become explosive with exposure to air.

NIOSH: Recommends that exposure to occupational carcinogens be limited to the lowest feasible concentration.

ACGIH: The threshold limit value (TLV) is 5 ppm averaged over an 8-hour workshift.

Vinylidene Chloride may be a CARCINOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.
Determining Your Exposure

▶ Read the product manufacturer’s Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.

▶ For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.nj.gov/health/eoh/rtkweb) or in your facility’s RTK Central File or Hazard Communication Standard file.

▶ You have a right to this information under the New Jersey Worker and Community Right to Know Act and the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.

▶ The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects
The following acute (short-term) health effects may occur immediately or shortly after exposure to Vinylidene Chloride:

▶ Contact can irritate and burn the skin and eyes.
▶ Inhaling Vinylidene Chloride can irritate the nose and throat causing coughing and wheezing.
▶ High levels can cause headache, dizziness, drowsiness, depression, and a “drunken” feeling that can lead to unconsciousness.

Chronic Health Effects
The following chronic (long-term) health effects can occur at some time after exposure to Vinylidene Chloride and can last for months or years:

Cancer Hazard
▶ Vinylidene Chloride may be a CARCINOGEN in humans since it has been shown to cause kidney cancer in animals.
▶ Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard
▶ There is limited evidence that Vinylidene Chloride may damage the developing fetus in animals.

Other Effects
▶ Prolonged or repeated contact can cause a skin rash, dryness and redness.
▶ Vinylidene Chloride may damage the liver and kidneys.

Medical

Medical Testing
If symptoms develop or overexposure is suspected, the following are recommended:

▶ Liver and kidney function tests

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are not a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures
▶ More than light alcohol consumption can cause liver damage. Drinking alcohol may increase the liver damage caused by Vinylidene Chloride.
Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.

In addition, the following may be useful or required:

- Before entering a confined space where Vinylidene Chloride may be present, check to make sure that an explosive concentration does not exist.
- Where possible, transfer Vinylidene Chloride from drums or other containers to process containers in an enclosed system.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Vinylidene Chloride. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend Silver Shield®/4H® and Barrier® for gloves and Tychem® BR, Responder®, and TK, or the equivalent, as protective materials for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear indirect-vent, impact and splash resistant goggles when working with liquids.
- Wear non-vented, impact resistant goggles when working with fumes, gases, or vapors.
- Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure over 5 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus or an emergency escape air cylinder.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Vinylidene Chloride is a FLAMMABLE AND REACTIVE LIQUID.
- Vinylidene Chloride is a peroxide forming chemical that can spontaneously decompose and become explosive with exposure to air.
- Use dry chemical, CO₂, water spray or foam as extinguishing agents.
- POISONOUS GASES ARE PRODUCED IN FIRE, including Hydrogen Chloride and Phosgene.
- CONTAINERS MAY EXPLODE IN FIRE.
- Use water spray to keep fire-exposed containers cool.
- Vapors may travel to a source of ignition and flash back.
- Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source.
- Vinylidene Chloride may form an ignitable vapor/air mixture in closed tanks or containers.
VINYLIDENE CHLORIDE

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Vinylidene Chloride is spilled or leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- Absorb liquids in cement powder, dry sand, earth, or a similar material and place into sealed containers for disposal.
- Ventilate and wash area after clean-up is complete.
- Keep Vinylidene Chloride out of confined spaces, such as sewers, because of the possibility of an explosion.
- DO NOT wash into sewer.
- It may be necessary to contain and dispose of Vinylidene Chloride as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with Vinylidene Chloride you should be trained on its proper handling and storage.

- Vinylidene Chloride, when not inhibited, can violently polymerize (self-react), in the presence of HEAT, LIGHT, AIR and OXYGEN, to form a peroxide compound that is shock-sensitive at very low temperatures (-40°F (-40°C)).
- Vinylidene Chloride reacts violently with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE), OZONE, ALUMINUM, ALUMINUM ALLOYS, COPPER, COPPER ALLOYS, CHLOROSULFONIC ACID, OLEUM, and NITRIC ACID.
- Store with an inhibitor (such as Monomethyl Ether of Hydroquinone) in air-tight, closed containers in a cool, well-ventilated area away from AIR, LIGHT, MOISTURE and HEAT SOURCES.
- Sources of ignition, such as smoking and open flames, are prohibited where Vinylidene Chloride is used, handled, or stored.
- Metal containers involving the transfer of Vinylidene Chloride should be grounded and bonded.
- Use explosion-proof electrical equipment and fittings wherever Vinylidene Chloride is used, handled, manufactured, or stored.
- Use only non-sparking tools and equipment, especially when opening and closing containers of Vinylidene Chloride.
- DO NOT use ALUMINUM or COPPER METALS when handling or storing Vinylidene Chloride.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health
Right to Know
PO Box 368
Trenton, NJ 08625-0368
Phone: 609-984-2202
Fax: 609-984-7407
E-mail: rtk@doh.state.nj.us
Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.
GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The CAS number is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

The critical temperature is the temperature above which a gas cannot be liquefied, regardless of the pressure applied.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15-minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually Air), at the same temperature and pressure.

The vapor pressure is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.
Common Name: **VINYLIDENE CHLORIDE**

Synonyms: 1-1-DCE; 1,1-Dichloroethene; 1,1-Dichloroethylene

CAS No: 75-35-4

Molecular Formula: **CH₂ = CCl₂**

RTK Substance No: 2006

Description: Clear, colorless liquid, or a gas above 89°F (32°C), with a mild, sweet odor

HAZARD DATA

<table>
<thead>
<tr>
<th>Hazard Rating</th>
<th>Firefighting</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - Health</td>
<td>FLAMMABLE AND REACTIVE</td>
<td>Vinyldene Chloride, when not inhibited, can violently polymerize (self-react), in the presence of HEAT, LIGHT, AIR and OXYGEN, to form a peroxide Compound that is shock-sensitive at very low temperatures (-40°F (-40°C)).</td>
</tr>
<tr>
<td>4 - Fire</td>
<td>Vinyldene Chloride is a peroxide forming chemical that can spontaneously decompose and become explosive with exposure to air. Use dry chemical, CO₂, water spray or foam as extinguishing agents. POISONOUS GASES ARE PRODUCED IN FIRE, including Hydrogen Chloride and Phosgene. CONTAINERS MAY EXPLODE IN FIRE. Use water spray to keep fire-exposed containers cool. Vapors may travel to a source of ignition and flash back. Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source. Vinyldene Chloride may form an ignitable vapor/air mixture in closed tanks or containers.</td>
<td></td>
</tr>
<tr>
<td>2 - Reactivity</td>
<td>Vinyldene Chloride reacts violently with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE); OZONE; ALUMINUM; ALUMINUM ALLOYS; COPPER; COPPER ALLOYS; CHLOROSULFONIC ACID; OLEUM; and NITRIC ACID. Vinyldene Chloride may contain Monomethyl Ether of Hydroquinone as an inhibitor.</td>
<td></td>
</tr>
</tbody>
</table>

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor Threshold</td>
<td>190 to 500 ppm</td>
</tr>
<tr>
<td>Flash Point</td>
<td>0°F (-18°C)</td>
</tr>
<tr>
<td>LEL</td>
<td>5.6%</td>
</tr>
<tr>
<td>UEL</td>
<td>16%</td>
</tr>
<tr>
<td>Auto Ignition Temp</td>
<td>1,058°F (570°C)</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>3.25 (air = 1)</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>500 mm Hg at 68°F (20°C)</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.2 (water = 1)</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>Very slightly soluble</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>89°F (32°C)</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>-188°F (-122°C)</td>
</tr>
<tr>
<td>Ionization Potential</td>
<td>10 eV</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>96.9</td>
</tr>
</tbody>
</table>

EXPOSURE LIMITS

<table>
<thead>
<tr>
<th>Limit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH</td>
<td>5 ppm, 8-hr TWA</td>
</tr>
<tr>
<td>The Protective Action Criteria values are:</td>
<td></td>
</tr>
<tr>
<td>PAC-1 = 75 ppm</td>
<td>PAC-2 = 500 ppm</td>
</tr>
<tr>
<td>PAC-3 = 1,000 ppm</td>
<td></td>
</tr>
</tbody>
</table>

PROTECTIVE EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloves</td>
<td>Silver Shield®/4H® and Barrier® (>8-hr breakthrough)</td>
</tr>
<tr>
<td>Coveralls</td>
<td>Tychem® BR, Responder®, and TK (>8-hr breakthrough)</td>
</tr>
<tr>
<td>Respirator</td>
<td>SCBA</td>
</tr>
</tbody>
</table>

HEALTH EFFECTS

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>Irritation and burns</td>
</tr>
<tr>
<td>Skin</td>
<td>Irritation and burns</td>
</tr>
<tr>
<td>Inhalation</td>
<td>Nose and throat irritation with coughing and wheezing</td>
</tr>
<tr>
<td></td>
<td>Headache, dizziness, drowsiness, depression and a “drunken” feeling that can lead to unconsciousness</td>
</tr>
<tr>
<td>Chronic</td>
<td>Cancer (kidney) in animals</td>
</tr>
</tbody>
</table>

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

Flush eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn.

Quickly remove contaminated clothing and wash contaminated skin with large amounts of soap and water. Seek medical attention.

Begin artificial respiration if breathing has stopped and CPR if necessary.

Transfer promptly to a medical facility.