
The Development of a High Throughput Solid Phase Extraction Method for PFAS in Human Serum Using an Automated Janus[®] Workstation

Zhan Quan Li^{1,2}, Linbin Zhong², Carrie Xu², Shawn O'Leary², Annie Lin², Collen Lestician², Diana Mathes² and Tina Fan² 1. APHL-CDC Public Health Laboratory Fellowship, 2. New Jersey Department of Health, Public Health and Environmental Laboratories, Environmental Laboratories, Environmental Laboratory Services, Ewing, NJ 08628

		R^2 volume of the new automated off-line SPE Method
	MeFOSAA	0.997
-	PFHxS	0.993
	PFHpS	0.998
	PFOS	0.993
	PFOA	0.991
	PFNA	0.992
	PFDeA	0.992
	PFUnA	0.996
	GenX	0.997
	ADONA	0.994
36 37 38 39 40 41 42 43 44 45 46 47 48 49	9CI-PF	0.996
	PFDoA	0.995

		R ² Z volume of the	
0	original on-line		
-		SPE Method	
	MeFOSAA	0.999	
	PFHxS	0.999	
	PFHpS	0.997	
	PFOS	0.997	
	PFOA	0.998	
	PFNA	0.999	
	PFDeA	0.996	
	PFUnA	0.999	
	GenX	0.995	
	ADONA	0.992	
	9CI-PF	0.999	
	ΡΕΠοΔ	0 999	

- (See Figure 1 and Figure 2.)

- validation.

42 Using Online SPE-LC-MS/MS." (2022). 17, 2023.

4.Krista Y. Christensen, Michelle Raymond, Jon Meiman, Perfluoroalkyl substances and metabolic syndrome, International Journal of Hygiene and Environmental Health, Volume 222, Issue 1, 2019, Pages 147-153, ISSN 1438-4639,

https://doi.org/10.1016/j.ijheh.2018.08.014 (https://www.sciencedirect.com/science/article/pii/S1438463918304024)

(PFAS) Laboratory Procedure Manual (cdc.gov)

Acknowledgements

- (Grant #: NU88EH001326).

Conclusions

. A new Janus protocol has been created for the new automated off-line SPE method.

2. The poor peak shape issue in the UHPLC-MS/MS analysis is a major challenge of the new method development. Drying out and reconstituting the analytes before the injection of the UHPLC-MS/MS system can improve the peak shape significantly

3. The new protocol has already been tested on the Janus. This new SPE method reduces the time it takes to prepare 48 samples from eight to two hours.

4. The test results (See Figure 3) showed that the new off-line SPE method produces acceptable calibration curves, the R² are between 0.991 to 0.998 for all analytes as the original on-line SPE method does (See Figure 4.)

5. According to the test result (See Figure 5), the new automated SPE method has the same recovery rate as the original on-line SPE method had. Like the original online SPE method, the accuracy of the matrix spiked samples is within ±30% of the nominal value. This means the usage of the automated off-line method will not decrease the accuracy and precision of the sample preparation.

6. We will continue to improve and test the protocol for the further method validation.

7. This method will be used in our biomonitoring projects for PFAS after method

References

1.Brandsch, Thomas. "Determination of PFAS in Water According to EU 2020/2184 and DIN 38407-

2.Silva MJ, Samandar E, Preau JL Jr, Reidy JA, Needham LL, Calafat A. Automated solid-phase extraction and quantitative analysis of 14 phthalate metabolites in human serum using isotope dilution-high-performance liquid chromatography-tandem mass spectrometry. J Anal Toxicol. 2005 Nov-Dec;29(8):819-24. doi: 10.1093/jat/29.8.819. PMID: 16374941.

3. "Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS). National Institute of Environmental Health Sciences, https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm . Accessed 17 January

5. The Centers for Disease Control and Prevention. (2017-2018) Online Solid Phase Extraction-High Performance Liquid Chromatography-Turbo Ion Spray-Tandem Mass Spectrometry (online SPE-HPLC-TIS-MS/MS). Retrieved February 21, 2023, from Perfluoroalkyl and Polyfluoroalkyl Substances

6. Organtini KL, Rosnack KJ, Lame ME, Calton LJ. A Method for the Extraction and Analysis of PFAS from Human Serum Utilizing Weak Anion Exchange (WAX) Chemistry and Xevo TQ-S micro. Waters Corporation. 2021. A Method for the Extraction and Analysis of PFAS from Human Serum Utilizing Weak Anion Exchange (WAX) Chemistry and Xevo TQ-S micro (waters.com)

• This study was supported by APHL and New Jersey Department of Health.

• This poster is partially funded by the CDC's State Biomonitoring Cooperative Grant

• Thank you to our colleagues in the Chemical Terrorism Lab and members of the NJ State Biomonitoring team for their endless support.

