Chapter 8
The Analysis of MicroRNAs in Stem Cells

Loyal A. Goff', Uma Lakshmipathy?, and Ronald P. Hart'*

Abstract MicroRNAs represent a newly-discovered class of regulatory molecules
that has been demonstrated to be required for stem cell function. Methods for
measuring unique microRNAs are particularly useful in classifying stem cells or
for studying mechanisms underlying their differentiation. Furthermore, straight-
forward bioinformatic and statistical methods are useful in investigating large sets
of data to formulate hypotheses or identify microRNAs associated with a specific
effect or phenotype. We present an overview of microRNA biology, detection tech-
niques including microarrays, as well as methods for analyzing the resulting data
in the context of stem cell function.
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8.1 Background

No current discussion of stem cell maintenance, regulation or differentiation can be
complete without mention of the largest class of tiny regulators of gene expression,
microRNAs. The relatively recent discovery of this class of small non-coding
RNAs has turned many common assumptions regarding cellular networks on end.
Various types of small, non-coding RNAs exist as modulators of gene expression,
affecting transcription rate [50, 85], heterochromatin formation [107, 130], transpo-
son silencing [133], mRNA stability [13, 46, 160], and mRNA translation into
functional proteins [101, 102, 120]. MicroRNAs represent a class of endogenous
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genes whose primary role appears to be post-translational regulation of specific
target mRNAs [3, 11]. MicroRNA genes are encoded both as intergenic transcripts
as well within intronic sequences. The concept of intronic microRNAs alone dem-
onstrates that there is a greater compression of genetic information contained
within our genomes than previously understood, and the identification of over
1,000 human microRNA sequences to date suggests that there is indeed more regu-
latory complexity than previously appreciated.

What exactly are microRNAs? While a mature microRNA can arise from an
independent transcript, a poly-cistronic cluster, or an intronic sequence, each of
these produces a stem-loop RNA precursor sequence consisting of ~100 paired
bases. These stem loops then become the substrate for the multi-protein
“Microprocessor” complex [37, 51]. Association with this complex confers binding
by the dsRNA binding enzyme Pasha and enzymatic cleavage of the hairpin from
the primary transcript by the nuclear RNase III enzyme Drosha [37, 55, 56, 91, 168,
169]. The cleaved hairpins are then exported from the nucleus via Exportin-5 and,
once in the cytoplasm, associate with the miRNP (microribonucleoprotein) com-
plex. The proteins within this complex include Dicer, a second RNase III enzyme
that removes that loop from the hairpin sequence, and a helicase to separate the
resulting duplex and remove the microRNA” strand (the strand complementary to
the mature microRNA). The result is a ‘primed’ ribonuclear complex capable of
targeting a specific sequence. This specificity is conferred by the presentation of the
now single-stranded ~21mer mature microRNA, which will recognize
the 3’ untranslated region (3° UTR) of a target mRNA. At our present level of
understanding, there are several mechanisms of action that might occur at this
point. A bound miRNP complex demonstrating a high degree of complementarity
is capable of activating its “Slicer” activity resulting in the cleavage of the mRNA
transcript at the site of miRNP binding [100, 163]. This ultimately results in the
degradation of the transcript. Additionally, mRNA degradation has been observed
through 5" de-capping mechanisms [13, 127] as well as rapid de-adenylation [46,
160]. More commonly with respect to mammalian microRNAs, the interaction of a
primed miRNP and its specific target results not in the degradation of the mRNA
but rather in the repression of translation. Again, several different mechanisms for
translational repression have been observed. Bound microRNAs are capable of
directing target mRNAs to specific sub-cellular locations known as P-bodies [13,
95, 101, 102, 120, 127], or simply stalling protein production through direct hin-
drance of ribosomes [80, 118] or interfering with translation initiation [68, 121].
Estimates suggest there are ~400 microRNA genes in each invertebrate species, and
~1,000-1,500 genes in mammals [93, 97], with some groups predicting as many as
10,000-20,000 microRNA genes per genome [109]. The widespread impact of this
new layer of gene regulation is also becoming more apparent in that several groups
estimate anywhere from ~30% to 95% of the genome may be targets for microR-
NAs [93, 109]. This type of gene control represents a novel regulatory mechanism,
and is predicted to affect many crucial cellular processes and developmental pro-
grams, including neurogenesis.
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8 The Analysis of MicroRNAs in Stem Cells 143

Only a few validated target mRNAs have been identified in animals. This infor-
mation, combined with correlated tissue expression data and functional analyses,
highlights some of the important roles for microRNAs. microRNAs have been
shown to play a role in numerous cancers [1, 23, 25, 26, 38, 42, 52, 5961, 64, 70,
81, 84, 129, 131, 142, 149], cardiac hypertrophy/failure [149], and several other dis-
orders. Additionally, cellular processes such as fat metabolism [40, 161], insulin
regulation [122, 123], apoptosis [7, 29, 34, 162], cell cycle regulation [58, 95, 135],
maternal-zygotic transition [46, 110, 156], viral defense [35, 91], axis specification/
patterning [45, 57, 63, 71, 104], tissue formation [32, 43, 115, 164], as well as stem
cell specification and differentiation [4, 16, 21, 32, 39, 58, 65, 66, 79, 92, 115, 126,
135, 137, 138, 140, 159, 171] have all been associated with microRNA activity.

Shortly after the identification of microRNAs, tissue surveys were conducted to
assess the potential impact of these small inhibitors [6, 8, 83, 117, 145]. It became
immediately apparent that most microRNAs are highly tissue restricted, with only
a slight overlap between tissues for any given microRNA. A few microRNAs, such
as the let-7 family, appear to be ubiquitously expressed in all tissue types [8, 117,
145], suggesting a role in regulating the more basal, and therefore more prevalent
processes within the cell, such as cell-cycle regulation [70]. More commonly, a set
of tissue specific microRNAs are associated with specific cellular functions. This
correlation, while only predictive of a microRNA’s role, is strengthened by associ-
ated functional analysis of microRNA activity via over-expression [70, 123, 148]
and inhibition studies [39]. For example, antisense targeting of miR-122, a liver
specific microRNA, led to dysregulation of lipid metabolism in the liver [40]. Using
similar approaches of combining tissue-specific expression data with functional
assays has led to a greater understanding of the impact of microRNAs in the cell,
without the need for specifically identifying valid mRNA targets. Using this
approach, groups have ascribed general functions for given microRNAs in context,
such as the requirement for miR-125b for the proliferation of differentiated cells
[92], miR-143 for the regulation of adipocyte differentiation [39], and numerous
others [79, 146]. It would be shortsighted at this point to restrict the potential roles
that microRNAs may be performing in the cell as new roles are being unraveled at
an accelerated rate. The diversity in the already established roles for microRNAs
demonstrates that this class of small regulatory RNA molecules plays an integral
role in numerous biological pathways and suggests that they will play an important
role in other cellular processes including differentiation.

One of the more interesting roles suggested for these small inhibitors of transla-
tion is the regulation and specification of stem cells. Several studies have attempted
to determine the global role of microRNAs in development by selective knockdown
of required components of the microRNA/RNAI pathway [17, 73]. A few groups
have determined that Dicer, the RNase III enzyme responsible for processing
microRNAs, and therefore required for microRNA activity, is required for murine
cell differentiation and specification [17, 73, 114]. Evidence shows that a Dicer-1
null mutant mouse was embryonic lethal due to a depletion of stem cells [17], as
well as demonstrating a failure of existing stem cells to adequately differentiate [73].
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Interestingly, a similar study was conducted in zebrafish where it was shown that
embryos with a maternal-zygotic Dicer mutant are capable of stem cell mainte-
nance and differentiation but are defective in patterning, morphogenesis, and orga-
nogensis, suggesting that the role of microRNAs in stem cell regulation may have
changed dramatically during the course of evolution [45]. A mouse knockout of the
DGCRS8 (Pasha) gene, required for the recognition and accurate processing of
microRNA precursors, demonstrated the requirement of functional mature microR-
NAs for appropriate differentiation of ES cells. It was shown that ES cells lacking
a functional DGCR8 gene failed to completely differentiate and retained the
pluripotency markers Oct4 and Nanog, despite the onset of selected differentiation
markers as well [151]. Furthermore, knockout mice lacking Argonaute2 (Ago2),
the catalytic component of the RISC complex, exhibited severe defects in neural
development, including the failure to close neural tube [100]. These experiments
highlight the critical, if not yet well understood role that microRNAs play during
stem cell development.

Early on, it was noted that stem cells express unique populations of microRNAs
that were not present in any adult tissues [46, 65, 66, 110, 138], some of which
additionally appear to be species specific. A conserved eutherian microRNA cluster
is expressed exclusively in undifferentiated stem cells and is immediately down-
regulated upon induction of differentiation [65, 66]. Since microRNAs are hypoth-
esized to have a predominately repressive role, it is reasonable to speculate that
these microRNAs are responsible for maintaining a stem-like state through repres-
sion of pro-differentiation factors. A similar group of microRNAs, although with
distinctly unique sequences and genomic locations, is evident in differentiating
human embryonic stem cells [138]. The presence of these embryonic stem cell-
specific microRNAs, and their clearance during differentiation, suggests a role in
restricting cell differentiation. In contrast, new populations of tissue specific micro-
RNAs are coordinately induced during differentiation and specification of stem
cells [31, 32, 45, 74, 79, 83, 86, 89, 111, 140, 157]. Conserved microRNAs miR-1
and miR-206 are both induced during, and are required for, muscle cell differentia-
tion and specification in mammals [32, 116] or birds [140]. Expression of miR-181
in hematopoietic stem cells is associated with an increase in B-cell specification
[31], while other hematopoietic microRNAs (miR-142, and miR-155) are also
induced during blood cell maturation [31, 125, 137]. Finally, subsets of microRNAs
can be used to classify, for example, differences between embryonic stem cells,
embryoid bodies, and embryonic carcinoma [89]. The requirement for microRNA
activity during development and the influence that specific microRNAs have upon
differentiation strengthen the argument that microRNAs are required for establish-
ing and perhaps maintaining a differentiated state.

Without a doubt, microRNAs are present and active in both stem cell mainte-
nance and differentiation. But before we are able to fully comprehend the roles of
these small molecules, we must be familiar with the current methods for detection,
analysis, and contextual interpretation of microRNAs. We present here an overview
of current techniques in microRNA expression profiling, and suggest several possible
workflows for analysis and interpretation of microRNA expression data.
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8 The Analysis of MicroRNAs in Stem Cells 145

8.2 Available Tools for Detecting MicroRNAs

Shortly after the realization that microRNAs were both abundant and ubiquitous
regulators within the cell, many standard techniques were adapted to accommodate
these new molecules. The first microRNAs identified were visualized by standard
Northern blotting. A commonly-used and reliable technique, the Northern blot was
easily deployed and required little adaptation to detect microRNAs. It unfortunately
suffered from the short-comings of being fairly low throughput and time-consuming.
Shortly after this, standard and quantitative real-time PCR (qPCR) were modified
for identification and detection of microRNAs [30]. In general, qPCR techniques
have been shown to yield the greatest dynamic range, improved specificity, and
increased sensitivity in microRNA detection assays. In one case, qPCR allowed
detection of microRNAs from single cultured neurons or laser captured somatoden-
dritic compartments [87]. gPCR is a moderately high-throughput assay allowing
rapid validation of a broader number of microRNAs than, for example, Northerns.

With the appearance of microRNA microarrays [6, 8, 48, 96, 111, 117, 145],
however, a large number of microRNA genes could be assayed in parallel and true
surveys or expression analyses could be conducted [6, 8, 83, 88, 117, 134, 145].
Several platforms emerged in rapid fashion [5, 8, 12, 18, 23, 24, 39, 47, 82, 96, 97,
99, 111, 139], and many commercial sources of microRNA arrays are readily avail-
able (Table 8.1); each with their own advantages and disadvantages. Most of these
are based on the public list of microRNAs found in the miRBase database main-
tained at the Sanger Institute (http://microrna.sanger.ac.uk) [53]. A select few
include probes for predicted microRNA genes or additional microRNAs that have
not yet been indexed by the Sanger registry. Most of the commercial microRNA
arrays are relatively quick to release updated probe sets as novel microRNAs are
released in miRBase. Early considerations in probe design for microRNA microar-
rays focused mainly on the problem of variable melting temperatures (T ) across
microRNAs. To ensure an adequate and consistent signal during an array experi-
ment, it is ideal for the probes to have a relatively narrow T _range. With fairly short
sequences from which to design probes, limited strategies are available to accom-
plish this goal. Solutions included logical sequence truncation or increasing the
stringency of hybridization in one of several ways. With most of the array-based
methods, it is difficult to claim resolution of specific microRNAs within 1 nt of the
probe sequence since the melting temperatures are quite low compared with the
longer probes often used for mRNA detection [48]. However, higher specificity can
be achieved using direct labeling of microRNAs to obtain RNA:DNA hybridization
(Ncode™) or by LNA oligo probes (mirCURY™), which enhance base stacking and
phosphate-backbone reorganization, resulting in an increased thermal stability.
Other detection techniques include ELISA-like or bead-anchored hybridizations
using probes and labeling similar to array methods to perform high-throughput
analyses on robotic liquid handling systems [114]. We focus this chapter on the use
of any of the available microRNA microarray platforms for high-throughput analysis
of microRNA expression.
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Table 8.1 Commercial sources of microRNA microarrays

Product name Source References
Human miRNA Microarray Agilent [150]
mirVana™ Ambion/Applied Biosystems [36, 170]
Species Specific MicroRNA Arrays CombiMatrix

MirCURY™ Exigon, Inc. [28, 112]
GenoExplorer™ GenoSensor Corp. [9, 33, 154]
NCode™ Invitrogen, Inc. [47, 72]
Human microRNA Microarray LC Sciences [67, 144]

Validation of microarray results originally depended on Northern blots but
recently qPCR has become the method of choice. However, while QPCR may be a
more convenient method for validation of a small to moderate number of micro
RNAs, the microarray quality control project (MAQC) [136] determined that the
best validation of an array experiment is to repeat the experiment on a separate
array platform. Attention should be given in the project design phase to adequately
prepare for some basic form of validation (i.e., ensure adequate material is available
and that an acceptable method for validation has been considered).

8.3 Experimental Design Considerations

A microarray study is only as good as its experimental design. The amount of time
spent planning and preparing an assay will pay off in the form of easily interpreta-
ble data, better quality results, and, ideally, straightforward answers to the experi-
mental question. Consider what it is that you are interested in uncovering with an
array study. A general survey alone to merely identify microRNAs present in a tis-
sue sample will probably yield too little information and will most likely not pro-
duce results acceptable for publication. Conversely, a complex, broad, and unguided
assay can be very confusing and cloud meaningful results in a sea of data.

A differential expression study can suggest whether or not microRNAs are being
regulated (via any number of mechanisms) between two or more conditions. The
number of conditions of interest will most likely determine the design of an experi-
ment. A simple comparison of two conditions, for example, treated vs. control, can
be conducted most effectively with a series of replicate two-color arrays. A more
complex experimental design, such as a time course, multiple treatment conditions,
or a multivariate study will require more careful design considerations.

Regardless of the scale of your experiment, replicate samples should be
employed to capture and account for biological variability. Obviously, the more
replicates that are used, the more statistical power is gained and the more confi-
dence can be expressed in reporting results. The trade-off has traditionally been that
more replicates require a significantly larger cost. This should not be so limiting
since the relative cost per sample has decreased substantially in the past few years,
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8 The Analysis of MicroRNAs in Stem Cells 147

and will continue to decrease as new technology and new competition emerges.
True biological replicates should be balanced with respect to arrays and dyes. We
recommend an absolute minimum of three replicates per sample, but encourage the
investigator to sample as many as is economically feasible for any given experiment.

8.4 MicroRNA Preparation and Handling

As with any RNA work, care and consideration must be given to ensure a clean,
sterile, and nuclease-free environment. RNA is considerably more susceptible to
degradation than DNA, and we find that degradation of the smaller microRNA gen-
erally is associated with degradation of higher molecular weight cellular RNAs such
as ribosomal RNAs. Care should be taken to wear gloves when handling isolated
RNA to protect your sample from RNAses found on the skin. RNA work should be
conducted in a dedicated and clean space that is routinely treated with a nuclease
inhibitor (e.g. RNaseZap, Ambion Cat #0611001A). If you begin to notice increased
degradation of your isolated RNA, or generally reduced signal intensities in consec-
utive experiments, a thorough cleaning of your workspace is recommended.

An early realization was that the majority of labs involved in RNA work were
commonly discarding RNA comprising less than ~100 bases in length. This was
assumed to be primarily degradation products resulting from the RNA isolation
techniques themselves. A widespread technique involved the ethanol-mediated @
binding of RNA to silica gel cartridges (for example, Qiagen RNeasy™). This
allowed for the retention of large RNA molecules and the exclusion of anything
passing through the cartridge, including weakly binding smaller RNA molecules.
This method was easily modified by the manufacturer for retention of microRNA
sequences by increasing the concentration of ethanol to drive a stronger affinity for
the silica. While this did increase the yield of microRNAs, the increase in ethanol
concentration often carried over to downstream applications potentially affecting
reaction efficiencies. After much trial and error, we recommend a standard Trizol
(Invitrogen Cat # 15596-018) RNA isolation followed by ammonium acetate/ethanol
precipitation. If required, a carrier such as linear acrylamide (Ambion Cat
#AM9520) can be used to increase yield and help precipitate the RNA. The result
is an ultra-pure total RNA preparation that contains RNA of all sizes including
microRNAs. Downstream applications may require that the microRNAs be isolated
from the total RNA population. Several commercial products, including the miR-
Vana™ Kit (Ambion, Austin, TX) or the PureLink™ miRNA Isolation Kit
(Invitrogen, Carlsbad, CA), have been developed that will allow size fractionation
based on selective column binding affinities or gel electrophoresis. We propose a
simpler method of size fractionation via filtration. Centrifuge filter devices are a
relatively inexpensive method for size selection and have demonstrated good isola-
tion and separation properties. Begin by passing a sample of total RNA preparation
through a ~100,000 molecular weight cutoff (MWCO) filter (Microcon YM-100
Cat# 42412). The microRNAs and any other small RNA (<100bp) will pass
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through the filter and the larger RNA (mRNA, rRNA) will remain as retentate. The
flow-through contains microRNA. The mRNA may be recovered by inverting and
centrifuging the filter. Since the microRNA will co-purify with any low molecular
weight contaminants, an additional clean-up procedure step is to concentrate the
sample on a 3,000 MWCO filter (YM-3) to remove salts, phenol, or other
impurities.

There are several rapid and simple assays that can be conducted on isolated
microRNA that will test the quality and quantity of the total RNA or microRNA. A
common technique to quantify an RNA preparation is to measure the absorbance at
260nm (A,,) with a low-volume spectrophotometer, such as the Nanodrop ND-
1000, which requires only 1-2 ul of sample. Typically, the absorbance is measured,
corrected for dilution, and multiplied by a constant conversion factor to determine
the concentration. The conversion factor for RNA is typically 40 ug/ml per A,
unit. This constant is derived from both the average molecular weight of RNA and
the extinction coefficient. Since microRNAs have a significantly shorter sequence
than the average RNA, this coefficient is insufficient. The approximation of the
constant for microRNA that should be used to calculate concentration is 33 pg/ml
per A, unit. This is an important consideration only when microRNAs are isolated
separately from total RNA.

In addition to microRNA quantity, quality of the preparation can be inferred by
measuring the A,, and A, . Since typical contaminating components absorb light
at these two wavelengths (e.g., proteins at ~280 nm, ethanol at ~230 nm) the stand-
ard ratios A, /A, and A, /A . can be used as a measure of RNA purity.

260 28'0 . 260 230 )
A “clean” preparation typically produces A, /A . and A, /A, . ratios = 2.0 (when

measured at pH 8). If your sample producezgovalﬁ%s in eiﬁfer i;?‘ these ratios < 1.8,
we recommend additional cleanup steps to remove contaminants carried over from
the RNA isolation.

While the spectrophotometer is a useful device to quantify RNA samples and
determine their purity, it cannot determine the quality of the RNA itself (i.e., how
intact is the RNA). High molecular weight RNA or total RNA fractions are typi-
cally assessed by gel electrophoresis. This is not realistic for microRNA samples,
which regularly do not have enough mass to spare for a gel analysis. A practical
solution is capillary electrophoresis. We recommend the Agilent Bioanalyzer 2100
system (Agilent, Santa Clara, CA) for several reasons. There are two available RNA
quality assays that each measure different concentrations of input RNA material,
although the quantity measurements are listed by the manufacturer as accurate
+50%. Additionally, the small RNA bioanalyzer kit enables the characterization of
microRNA down to the picogram/microliter level [105]. The calculated RNA
Integrity Number (RIN) provides a consistent and standard metric for the evalua-
tion of total RNA quality. In the absence of this system, we recommend traditional
agarose gel electrophoresis of the high molecular weight RNA fraction, or unfrac-
tionated total RNA, as a proxy for the assessment of microRNA quality within the
same sample.
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8 The Analysis of MicroRNAs in Stem Cells 149

8.5 Probe-Level Interpretation of MicroRNA Array Data

Most commercial microRNA microarray platforms focus exclusively on the micro-
RNAs derived from the most common model organisms; human, mouse, and rat. At
the time of writing this chapter, the NCode™ platform from Invitrogen was designed
to include probes for the above named species and additionally, probes for zebrafish,
Drosophila, and the nematode C. elegans [48]. Since multiple microRNAs appear
to share strong evolutionary origins and are highly conserved across multiple line-
ages, we can use the information content available to expand both the applications
of these arrays, as well as our understanding of the expression of microRNAs
across multiple species.

The high level of interspecies conservation of a large set of microRNAs means
that the probes designed against human microRNAs, for example, may be useful
for identifying novel microRNAs from similar vertebrate species. Furthermore,
since most of the microRNA array platforms cannot distinguish between two mol-
ecules with 1bp difference between them, those microRNAs that have diverged
<1 bp should be detected by that probe. Through the course of our array design, we
have been able to successfully map all known microRNAs from human, mouse, rat,
zebrafish, Drosophila, and C. elegans to ~90% of the remaining known metazoan
microRNA sequences. While this will not include the microRNAs which have been
observed to be species-specific, a good deal of information from other model
organisms is made available using an existing platform. This advantage has been
useful as well in confirming the existence of novel microRNAs in one species that
are homologous to known microRNAs. For example, the illumination of a probe for
hsa-miR-519a from a labeled rat microRNA sample suggests the presence of a rat
homolog for miR-519a. While this is at best circumstantial evidence, a list of poten-
tial homologs to be tested further could readily be obtained by hybridization to the
existing platforms. It would be short-sighted to limit interpretation of microRNA
array data to the given probes from one species.

Once a probe sequence is available to the public, a standard BLAST search
against all known microRNAs will effectively “re-annotate” that specific probe.
For the NCode™ microRNA array platform, this has already been conducted. A web
tool is available (http://cord.rutgers.edu/gal_generator/) into which a blank array
map can be input, and any number of available species can be selected. Probe iden-
tifiers are indexed and compared to previous BLAST results across all known
microRNAs from all available species, identifying those probes designed for
human microRNAs that are, for example, exact matches to gorilla. Probes found to
vary by one or two nucleotides from a perfect match for a given species are labeled
as negative controls to determine hybridization specificity. The output is a custom
array layout file specifically annotated for any given species or combination of
species, allowing the use of a single array to detect most microRNAs in all species
found in miRBase. Take advantage of these highly conserved sequences when
designing experiments. The lack of availability of a specific species microRNA
microarray should not hinder the use of commercially available microRNA arrays.

Shi_Chog.indd 149 @ 5/30/2008 5:59:56 PM



150 L.A. Goffet al.

8.6 Common Data Analysis Workflows for MicroRNA
Microarrays

Much thought has been put into analysis of gene expression data over the past sev-
eral years. Increasing use of microarray technology has highlighted the need for
robust and accurate workflows for dealing with massive amounts of gene expression
data. Many novel algorithms have emerged to deal with multivariate microarray
data. For the most part, microRNA expression data can be treated with exactly the
same methods as mRNA data. PCR and array platforms have had to change very
little to adapt to these smaller molecules and therefore standard workflows continue
to apply. However, several of the traditional normalization methods are based on
assumptions that do not hold true for current microRNA expression data.

As with most data analysis, the appropriate workflow is the one that makes the
most sense in the context of the specific biological question being asked. In most
cases, multiple arrays are used in a single experiment. This requires scaling and/or
normalization methods to make the arrays comparable and compensate for artifacts
or effects between arrays. Readily available techniques include a list of model-fit-
ting approaches. Most model-fitting algorithms such as locally-weighted linear
regression (loess), spline fitting (gspline), or linear modeling assume that there are
a relatively large number (>1,000) of detectable measurements upon which to base
interpretations. Additionally, most of these normalization methods assume that the
majority of measurements will remain unchanged across the majority of the arrays
(or conditions).

For smaller microRNA array experiments these assumptions may not be met.
Since there are currently slightly less than 1,000 human microRNAs known, it is
quite possible that a smaller microRNA dataset will not have a minimum number
of measurements to meet this assumption. Reported measurements of microRNA
expression levels are quite dynamic as well. The majority of microRNAs are
expressed in a highly tissue-specific manner. This again would violate the assump-
tion that genes remain relatively unchanged across arrays. For these otherwise lim-
ited datasets, we propose that a more appropriate choice for a normalization
technique is a non-parametric method such as quantile normalization. Speed and
colleagues were the first to apply quantile normalization to microarray datasets [19]
and this was done originally on single-channel Affymetrix™ arrays. The only
assumption is that the distribution of gene abundances is nearly the same in all
samples. This is true for low abundance genes, and to a fairly good approximation,
for genes of moderate abundance, but does not necessarily hold true for the few
high-abundance genes, whose typical levels vary noticeably from sample to sample.
In this normalization scheme, a gene X channel matrix is constructed from the
dataset using background-subtracted intensity values. The matrix is then sorted by
column into “quantiles” and the mean intensity value is taken across each row. This
mean value then replaces the value in the original matrix order effectively forcing
an identical distribution across all of the arrays. This brute-force normalization is
an effective, rank-based method for reducing the effects of array and dye bias by
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8 The Analysis of MicroRNAs in Stem Cells 151

re-scaling the entire dataset. This can be accomplished easily in the R environment
(http://www.r-project.org) using portions of the limma [155] package contained
within Bioconductor [44] (http://www.bioconductor.org) (Panel 8.1).

Once the dataset has been normalized and corrected, you must now examine
your experimental question. In most cases this is the identification of differentially
expressed microRNAs. There are a wide variety of analyses from which to choose.
For a simple two parameter comparison, the standard Student’s t-test is often appro-
priate. We recommend SAM (Significance Analysis of Microarrays; http://www-
stat.stanford.edu/~tibs/SAMY/), a widely-used test similar to a t-test but including an
estimate of false discovery error and designed specifically for microarray data.
Standard ANOVA methods can also be used to explore the variance across more
than two conditions. Regardless of the statistical test chosen, P-values must be cor-
rected for multiple testing. With the high number of statistical tests (one for each
gene), the likelihood of satisfying the null hypothesis (all means are equal across
conditions) by chance alone increases. To take this into consideration, we must cor-
rect for performing multiple tests. The preferred method in microarray studies is to
control the false discovery rate (FDR), or the expected proportion of incorrectly
rejected null hypotheses. Benjamini-Hochberg [14], Bonferroni [62], and Westfall-
Young [152, 153] are three commonly used types of multiple testing corrections;
each is available from within R. The result will be a list of significantly regulated
microRNAs that have passed the stringency test for multiple testing.

While this workflow is appropriate for small microRNA datasets, a more power-
ful and suitable approach is available for robust, multivariate expression datasets.
Linear models have tremendous power to describe data, but have only recently
become popular for microarray data analysis. Modeling a dataset entails the con-
struction of a linear equation that “describes” the data based on a series of pre-
defined parameters. The goal then is to be able to re-create the dataset with a
minimal amount of parameters, while accounting for random errors. This is best

Panel 8.1 Quantile normalization in R. Quantile normalization can be performed fairly easily
within the R environment. Begin by starting a session in the directory containing a comma-
separated file containing a “gene x array” of background subtracted values. The following code
and comments will describe the workflow within R:

#Load required library

library(‘limma’)

#read file “file.csv” into object ‘raw’

raw < -read.csv(“file.csv”, header = T)

#generate a box-whiskers plot for raw data to #determine variability across arrays
boxplot(log2(raw), main = “Raw”)

#convert to matrix and normalize quantiles

norm < -normalizeQuantiles(as.matrix(raw) )

norm < -as.data.frame(norm)

#generate box-whiskers plot for normalized data to confirm normalization
boxplot(log2(norm), main = “Normalized™)

#write normalized values to new file

write.csv(norm,file = “norm.csv™)

quit()
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described by Kerr and Churchill [75-78], who describe a “minimal model” for two-
color microarray data analysis that incorporates array, dye, gene, and sample effects
(Panel 8.2). In addition to these parameters, combinatorial effects are also incorpo-
rated into their model to describe spot effects (array X gene), labeling effects (dye
X gene), and gene-specific sample effects (sample X gene). It is this last effect that
is most important as it describes the differential expression of a given gene across
each sample. Care should be taken to balance the design when laying out an experi-
ment for linear model analysis. Spreading your samples across multiple independ-
ent arrays and labeling the replicates with alternating dyes will help to estimate the
technical errors produced by hybridization of individual arrays and dye labeling
effects. Poor experimental balance can result in confounded parameters that cannot
be estimated. Once the linear model has been described and fit to the dataset,
F-tests are conducted on a per-gene basis comparing the model with and without
the ‘sample X gene’ effects. This determines whether or not this effect contributes
to a significant portion of the observed intensity value for the given gene, given the

Panel 8.2 Linear modeling of microarray data. The linear model concept attempts to mathemati-
cally define a dataset based on a given set of defined parameters. In essence, the experimenter
describes the characteristics of the samples that are most important to a specific experiment. The
“design” file is used to outline the parameters in an experiment and may be as simple as a “condi-
tion” parameter categorizing a sample as control or experimental, or significantly more complex.
RNA source, sample preparation, technician name, or date of assay, are a small fraction of the
parameters that can be included in a larger experiment. Each can be tested to determine if there is
a significant “effect” on the resulting dataset. Once the parameters have been defined and associ-
ated with particular samples, a “comparison” matrix is used to describe the comparisons of interest
among the many parameters. This is a fairly straightforward process for single-channel array data,
but can become significantly more involved when dealing with two-color array data. To address
this class of microarray data, Kerr and Churchill [75, 76, 78] proposed a standard linear model
that attempts to describe some common sources of error in two-color microarray experiments. The
model:

Y, =W+A+D+V,+G,+AG, +DG, +VG, +¢,

ijkg

= the estimated mean of the dataset.

= the effect of being on the ith array.

= the effect of being on the jth dye.

V, = the effect of being on the kth sample.

G, = the effect of being on the gth gene.

AG]g = the combinatorial effect describing the spotting effect.

DG, = the combinatorial effect describing the gene-specific labeling effect.

VG,, = the combinatorial effect describing the effect of being a given gene in a specific sample.

€ = random error.
ikg.

This model will take each of these parameters into consideration when fit to microarray data. The
effect that is usually the most interesting is the VG,, effect. This model can be fit with or without
this specific effect and a per-gene F-test between the two fits will identify any genes with a con-
siderable variance across any of the samples. P-values can be either tabulated from an F-distribu-
tion or, more appropriately, bootstrapped by finding the probability that a randomly permuted
dataset will produce F-values greater than that observed with the original dataset. These P-values
should be subject to the same multiple testing corrections used for standard array analysis.
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distribution of the existing data. At this point, p-values can be bootstrapped by ran-
domly permuting the dataset and conducting the same F-test. The probability of
randomly obtaining a higher F-value will be determined empirically. P-values are
adjusted for multiple comparisons using a standard 5% FDR cutoff.

The advantages of this data analysis approach are that few assumptions about the
data are required a priori. The data themselves are used to drive the analysis.
Ideally, linear modeling can be used to examine any number of parameters simulta-
neously (i.e., cell line, phenotype, differentiation state, etc.), and the more parame-
ters that are included, the more accurate the resulting estimates of effect.
The primary drawback is the rather large number of samples required to maintain
sufficient degrees of freedom required for the estimation of each parameter. For
each estimated value, a degree of freedom must be sacrificed. Since there are a large
number of parameters involved (Array, Dye, Sample, Gene, etc.) this requires a
robust dataset to make these estimates possible. The more replicates that are con-
ducted, the more degrees of freedom available, yet experiment cost is a very com-
mon limiting factor inhibiting large numbers of replicates. This balance must be
considered prior to accepting an experimental design, as the benefit of using linear
modeling of microarray data is lost when you have to begin to sacrifice parameters
to measure due to insufficient degrees of freedom. Linear modeling can be con-
ducted using one of several freely available packages from the R/Bioconductor [44]
environment. Limma [155] is a flexible and powerful linear modeling package that
has extensive documentation, and is easily adaptable for both two-color as well as
single-channel arrays. There is an accompanying graphical user interface (lim-
maGUI) that makes data input and analysis more streamlined and accessible. We
routinely use the R’MAANOVA package [75, 76, 78] to analyze our microRNA
data. This package provides detailed instructions for preparing your dataset and
outlining the parameters for your experiment. In addition, MAANOVA provides a
host of post-modeling features that help to streamline the analysis and interpreta-
tion of your significant genes.

8.7 Biclustering

The expression profiling of microRNAs is an important step in understanding the
roles these molecules may play in regulating different cellular processes. However,
what little we know about microRNAs suggests that these RNAs act exclusively
through regulation of other genes. With this in mind, it then becomes prudent to
examine the expression of the targets of these microRNAs under the same condi-
tions, so as to (A) identify the pool of available targets under a given condition and
(B) identify/predict specific targets for a subset of regulated microRNA based on
the differential expression of target mRNAs. By directly comparing microRNA
expression data to data obtained from other assays such as mRNA profiles, addi-
tional information can be gleaned as well. mRNAs known to have a role in tran-
scriptional regulation have been shown to exert pressures on the promoter regions
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of intergenic microRNAs (LAG, 2007, unpublished results). These interactions, as
well as those satisfying other hypotheses, begin to emerge as underlying patterns in
this combinatorial dataset.

The concept of biclustering has been used frequently to reveal relationships
between genes based on their associations across numerous treatments or condi-
tions [94, 103, 124, 147]. Logically, the tighter the association across multiple
stressors, knockouts, treatments, or other conditions, the more confidence one
would have that two genes are associated with similar biological processes and/or
networks. The simplest approach to a biclustering analysis would be a cross-corre-
lation study (Fig. 8.1). Basic hierarchical clustering across both genes and condi-
tions would begin to unravel these relationships. This approach has been adapted
by several groups to begin to reveal networks of relationships between microRNAs
and their target mRNAs. One begins by constructing a matrix of correlations for all
possible microRNA:mRNA pairs within a dataset. The cross-correlation, or corre-
lation across these correlations, is then determined and used to relate neighboring
microRNAs to each other based solely on their relationships across all observed
mRNAs. The inverse is applied to mRNAs as well resulting in a two-dimensional
hierarchical clustering matrix describing the relationships both within and between
molecule types. We previously used cross-correlation clustering to investigate

Fig. 8.1 The cross correlation matrix. Using a heatmap-like visualization technique, the correla-
tions between microRNAs and mRNAs can be easily and readily visualized. In this experiment
comparing human embryonic stem cells with embryoid bodies or embryonic carcinoma cells,
regulated microRNAs (columns) are correlated to significant mRNAs (rows), and the resulting
R-values are used to color the component blocks. Hierarchical clustering in both dimensions
groups molecules based on their correlation across the opposing molecule type. Subclusters that
are negatively correlated (red) may represent potential microRNA:mRNA target interactions
resulting in degradation of the target mRNA. Regions showing strong positive correlation (green)
may help to identify microRNAs and mRNAs that may have a shared functional pathway or tran-
scriptional regulatory mechanism. The value of the biological information is seen when the con-
nections between microRNA and mRNA are severed by randomly permuting the cross correlation
matrix using the identical dataset, resulting in the complete abolition of subclusters
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mRNAs and microRNAs differentially expressed between human embryonic stem
cells, embryoid bodies, and embryonic carcinoma.

By focusing on subclusters of the cross-correlation matrix, several different
interactions between microRNAs and mRNAs can be inferred. Since microRNAs
have been shown to mediate mRNA degradation in certain conditions, it is reason-
able to suggest that this activity could be identified in a subset, or bicluster, of the
cross-correlation matrix demonstrating strong negative correlations across multiple
conditions (actually, mRNA targeting would represent only one of two possible
models of negative correlation). More specifically, if we can focus on a bicluster
that contains mRNA that are downregulated as corresponding microRNA increase
in abundance, we find the ideal subcluster to test putative interactions. A quick scan
of a now more limited subset of mRNA may reveal a conserved microRNA binding
motif amongst the candidate mRNA 3’UTRs. This approach is logical when we
realize that our focus is on those mRNAs that are actively degraded as a result of
microRNA binding activity. The extent of this mechanism in mammals is believed
to be relatively little compared to translational repression or sequestration. The
majority of microRNA:mRNA targets in mammals then, would probably not be
identified in this manner. Interestingly, in apparent contrast to this challenge, a few
groups have demonstrated an abundance of regulatory motifs in the 3'UTR of
microRNAs downregulated during treatment with a specific microRNA [97]. The
regulatory sequence contains a region of complementarity to the microRNA used.
It may be that with the overexpression of a microRNA there is a detectable increase
in the amount of target degradation that occurs. This suggests that targets can in fact
be identified through their negative correlation to an enriched microRNA, but
perhaps only in the context of extra-ordinary expression levels.

8.8 Revealing Regulation

While little is known about the functions of expressed microRNAs, even less is
known about the mechanisms governing the regulation of microRNAs themselves.
MicroRNAs are derived from both spliced intronic regions of mRNAs [98, 165,
166], as well as from unique transcripts located in intergenic regions [54, 88, 167].
Since no specific regulatory mechanism for microRNA processing has yet been
identified, it is assumed that the expression of intronic microRNAs is regulated by
the same mechanisms that regulate the abundance of the host transcript, as well as
mechanisms governing intron splicing. Intergenic microRNAs have been shown to
be transcribed by either Pol II [138] or in some cases by Pol III [20]. The Pol II
transcripts are 5’-capped and poly(A)-tailed [22, 138] in a similar fashion to known
mRNAs. A large number of intergenic microRNAs exist as poly-cistronic clusters.
These clusters are often transcribed as a single unit and summarily processed into
individual microRNA precursors after nuclear export [2, 59, 61, 65, 83, 138, 143].
Interestingly, early sequence analysis of upstream regions of intergenic microRNAs
failed to identify common Pol II minimal promoter elements or similarities to
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known mRNA promoter elements [22, 66, 138]. A few groups, including our lab,
have since cloned and validated promoter regions for a small number of microRNAs,
and demonstrated that similar regulatory mechanisms do in fact exist to control the
transcription rates of intergenic microRNA. These mechanisms include conserved
and occupied transcription factor binding sites as well as chromatin modifications,
both of which have been shown to exert a regulatory pressure on the cloned promot-
ers [41, 122, 131, 133, 141]. The inverse of the microRNA target analysis of a
bicluster would be the determination of common regulatory mechanisms governing
the expression levels of both microRNAs and mRNAs. Those transcripts sharing
similar transcriptional regulatory mechanisms may be identified as microRNA:
mRNA pairs demonstrating a positive correlation, and in most cases appropriate
correlations with transcription factors that may be acting on these networks (i.e.,
positive correlation with activating transcription factors and negative correlation
with transcriptional repressors).

Another approach that can be adopted to help unravel the regulatory mecha-
nisms of microRNAs involves that bioinformatic prediction of a response to a spe-
cific transcription factor or factors based on upstream sequence analysis. We have
recently applied this approach to study a specific pathway in differentiating mesen-
chymal stem cells (MSC) [49]. Upon identification of a specific pathway inhibitor
(in this case, Tyrphostin AG-370) that significantly alters the ability of MSC to dif-
ferentiate into osteocytes [120], we hypothesized that this effect may be mediated
in part by regulated microRNA activity. Since AG-370 specifically inhibits the
PDGF pathway, we conducted a literature search to identify transcription factors
directly downstream of the PDGF receptors. Position weight matrices for each of
these transcription factors were obtained from the TRANSFAC database [106, 158]
and used to scan the 5 Kb upstream sequences of microRNAs that had been previ-
ously identified as significantly regulated during osteogenic differentiation of
human MSCs. A comparison of the number of positive hits among the significant
microRNAs to the number obtained from a sample of expressed but not regulated
microRNA upstream sequences confirmed that these microRNAs were enriched for
putative PDGF pathway binding sites (p < 0.05). A z-score analysis of individual
microRNA upstream sequence hits vs. the average number of hits for all regulated
and non-regulated upstream sequences was unable to identify individual microR-
NAs significantly enriched for binding sites after a multiple testing correction.
However, the resulting p-value-rank-ordered list provided a confidence list that
allowed us to rank microRNA regulatory sequences based on their predicted
responses. Subsequent testing of regulated microRNA activity via qPCR during
osteogenic differentiation in the presence of the inhibitor demonstrated that those
microRNAs ranking higher in our confidence list showed a greater likelihood of
being modulated by AG-370 treatment [49]. This workflow enables the prediction
of microRNAs that may be responsive to a particular pathway or treatment, and the
validation of these predictions via drug-targeting. This moderately high-throughput
assay is just one example of a workflow that can be readily adapted to a wide
variety of experimental questions pertinent to both microRNAs and stem cells.
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8.9 Future Technologies

Current trends in technology will enable a fuller understanding of both the number
and extent of microRNAs regulating stem cell function. Ultra high-throughput,
deep sequencing technologies are beginning to emerge and re-define how nucleic
acid sequences are identified, quantified, and regulated. Three competing yet similar
technologies have emerged as the fore-runners in the field of deep sequencing. Each
requires the preparation of a cDNA library, sequence amplification by PCR, high-
density display of amplified sequences, and direct sequencing by either synthesis
[15] or ligation methods [27]. With the ability to read, in parallel, upwards of 40
million ~35-50bp sequences, the challenges of complexity and size of genetic
information are readily addressed and ultra high-throughput assays become feasible
for most investigators [10, 15, 69, 108, 128]. The application of these technologies
to small RNAs is not lost, and in fact represents some of the first uses for deep
sequencing. Direct sequencing of small RNAs requires no a priori knowledge of
the microRNA sequence, which provides an immediate advantage for discovery
over microarray technologies requiring the construction of complementary probes.
However, access to a nearly-complete genome sequence is an important require-
ment since, in our experience, only ~50% of deep-sequencing microRNA tags can
be aligned to genome, limiting the collection of valid data (LAG, 2008, unpublished
results). However, by counting the frequencies of each unique ~35mer sequenced
and validated by genome alignment, one can begin to examine the expression of
specific sequences without the common complications of cross-hybridization, dye
bias, microarray sensitivity, or saturation that plague microarray analyses. Counted
data for each unique read can be interpreted as a direct measure of expression for
use in differential expression studies.

As we begin to delve deeper into the genome in search of microRNAs and their
targets, stem cells become an important piece of the puzzle. The previously described
requirement of Dicer, DGCRS8, and other members of the microRNA biogenesis
pathway for both differentiation and maintenance of stem cells, combined with bio-
informatic predictions of 10,000 microRNA genes, suggest that unknown numbers
of novel sequences remain to be discovered in stem cells. A better appreciation of
the mechanisms of stem cell regulation and the players involved will advance our
understanding of the these crucial cells, and foster innovations in therapeutic appli-
cations of stem cells as well. The use of these next-generation techniques, however,
must be accompanied by rigorous and novel statistical interpretations, as well as
accommodations for the dimensions of the resulting data. Few biologists have had
to deal with the volumes of data that will be generated in the near future, and even
fewer have experience with mining and interpreting such large datasets. Collaborations
with statisticians and computer scientists, and a focus on developing the next genera-
tion of biologists with strong working knowledge of both computer programming
and statistical interpretation will be essential in discovering and interpreting micro-
RNA regulatory mechanisms in differentiating stem cells.
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